System Architecture for Autonomous Drone-based Remote Sensing

Manos Koutsoubelias, Nasos Grigoropoulos, <u>Giorgos Polychronis</u>, Giannis Badakis and Spyros Lalis

Computer Systems Laboratory Electrical and Computer Engineering Dept. University of Thessaly Volos, Greece

Co-financed by Greece and the European Union

Introduction

- Remote sensing/monitoring services
- Fully automated drone-based system
 Minimum or zero human intervention

System architecture

Manager organization

UNIVERSITY OF THESSALY

FSM

Mission Executor

Example driver program (WP based with periodic sensing)

Giorgos Polychronis

Functional testing: Field setup

- Microservices in Docker containers
- WP based scenarios
- Tests in the field

Functional testing: Simulated setup

- Microservices in Docker containers
- WP based scenarios
- Tests in simulated environment
 - Drone in a VM
 - o Ground Station in a VM
 - o Communication with ns3
 - Mockups for the
 - Weather stations
 - Hangar
 - Charger

User interface

Test scenario (simulated)

Test scenario (simulated)

Test scenario (simulated)

Event timeline (mission logs)

Drone speed & altitude (mission logs)

Conclusion

- Autonomous drone-based sensing
- Modular system architecture
 - Complete cycle of operation
 - Minimum or zero human intervention
 - Customizable

- Future work will focus on multiple drone deployment
 - Coordination
 - Multiple hangar/charger management
 - Dynamic replanning

Acknowledgements

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE, project PV-Auto-Scout, code T1EDK-02435.

European Union European Regional Development Fund

Co-financed by Greece and the European Union

Thanks for watching!

gpolychronis@uth.gr

https://csl.e-ce.uth.gr/projects/pv-auto-scout

