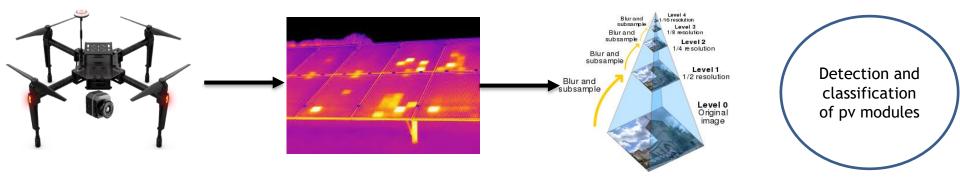


Automated detection-classification of defects on photo-voltaic modules assisted by thermal drone inspection

University of Ioannina Department of Materials Science and Engineering


A. Paipetis, L. Gergidis, L. Tzounis, C. Mytafides, A. Gurras, L. Lambrou International Conference of Engineering Against Failure (ICEAF)

6th ICEAF Den the Grander Beneficial and the Constant Den the Grander Beneficial and the Constant Den the Grander Beneficial and the Constant Den the Constant

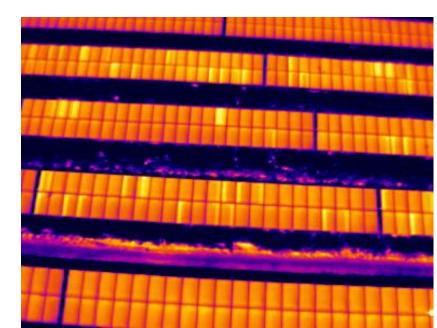
Objective of the study

Automated detection-classification of defects on photo-voltaic modules assisted by thermal drone inspection using thermal imaging

Computational tools

- OpenCV (Open Source Computer Vision)
 - Primary interface in C++, Python, Java MATLAB/OCTAVE
 - Application areas include
 - Facial recognition
 - Motion Tracking
 - Segmentation

- Python
 - High level programming language
 - Object oriented
 - Available for many operating systems

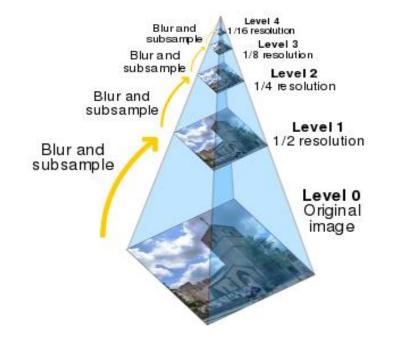

6th ICEAF Internet Andread of the the constant of the

Thermal imaging

Thermal imaging is an important and powerful non-destructive technique for the investigation of structural or operational defects

Advantages-Capabilities

- Fast, surface inspection
- No physical contact
- Great versatility of applications
- Ease of numerical thermal modelling

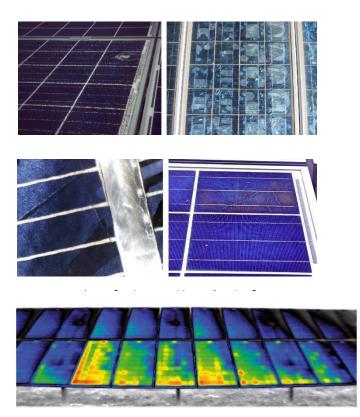

6th ICEAF ICEAF

Digital Image Processing

Computational method to convert an image into digital form and perform numerical operations in order to extract useful information from the under investigation image.

Applications :

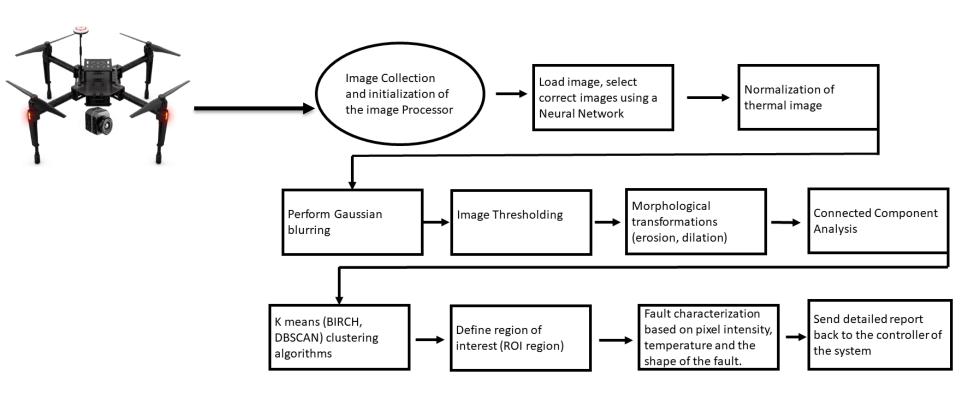
- Intelligent Transportation Systems
- Moving object tracking
- Defence surveillance
- Biomedical Imaging techniques
- IR-Thermography

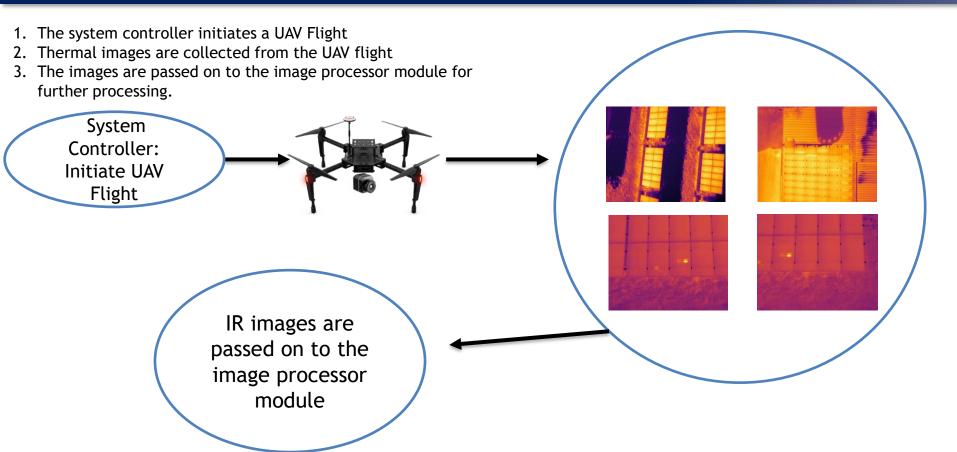

Faults in PV modules

Faults in PV modules can be classified in 3 different categories:

• Optical degradation: delamination and "bubbles", discoloration of the encapsulant glass(front-cover)breakage.

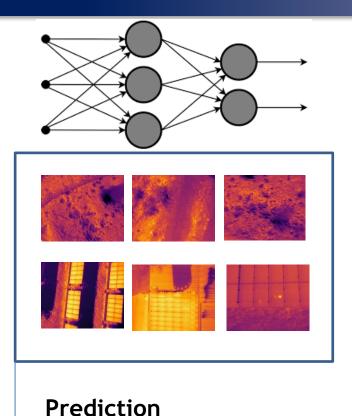
 Electrical mismatches and degradation: cell cracks/fracture and snail trails, broken interconnection ribbons, poor soldering, shunts and short-circuited cells, shading.


• Non-classified Faults: PID, defective/shortcircuited bypass diode, open-circuited submodule


Proposed Methodology

Collection of thermal images

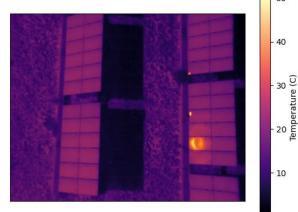
Neural Network Deployment


Problem:

In many cases images not containing PV modules were observed thus affecting the accuracy of the image processing methodology in terms of accuracy and computational time.

Solution:

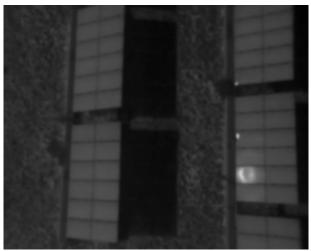
Deployment of a Convolutional Neural Network (CNN) in order to filter out unwanted images. The CNN is trained with images containing PV modules and images not containing PV modules.


Normalization and Conversion of images

- 1. Images are obtained in .tiff format and need to be converted in a suitable format.
- 2. Normalize images for the preprocessing phase.
- 3. Convert pixels into temperature range.
- 4. Apply a Color map for better visualization

Images obtained with Flir Vue pro Thermal camera Width : 640 pixels Height: 512 pixels Bits per pixel : 16(unsigned)

Gaussian Filter


The Gaussian blur is a type of image-blurring filter that uses a Gaussian function

$$G(x, y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu_x)^2}{2\sigma_x^2} - (y-\mu_y)^2} \frac{-(y-\mu_y)^2}{2\sigma_y^2}}{\sqrt{2\pi\sigma^2}}$$

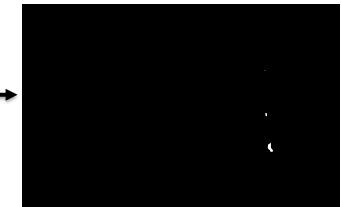
Where :

- x : the distance from the origin in the horizontal axis
- y : the distance from the origin in the vertical axis
- σ : the standard deviation (for each of the variables x,y) μ : is the mean

Output

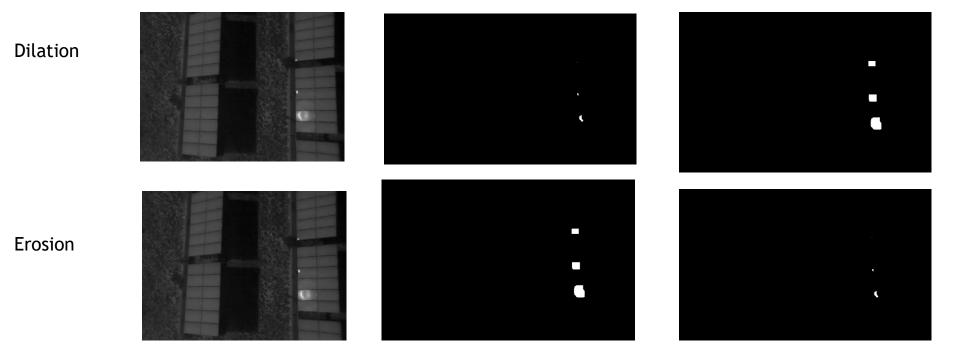
6th ICEAF Lett find Roberts of East of the Roberts of East of the Roberts of East of the Roberts of the Roberts In the Roberts of the Roberts

Image thresholding


Thresholding is the simplest method of image segmentation. From a greyscale image, thresholding can be used to create binary images.

The simplest thresh-holding methods replace each pixel in an image with a black pixel if the image intensity I_{ij} is less than some fixed constant T (that is $I_{ij} < T$), or a white pixel if the image intensity is greater than that constant.

Input



Morphological transformations

Morphological image processing is a collection of non-linear operations related to the shape or morphology of features in an image

Connected component analysis

- 1. Loop over the contours(hotspots) of the thermals image.
- 2. Perform a Connected component analysis in order to extract each feature individually
- 3. Store each feature in matrix for further processing

Constant of the second second

K means Clustering algorithm

K-means is one of the simplest unsupervised learning algorithms that solve the well known clustering problem

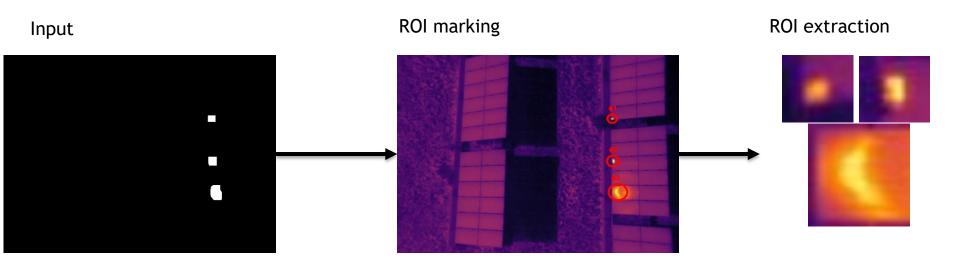
Algorithm

1. Clusters the data into k groups where k is predefined.

2.Select *k* points at random as cluster centers.

3. Assign objects to their closest cluster center

4.Calculate the centroid or mean of all objects in each cluster. 5.Repeat steps 2, 3 and 4 until the same points are assigned to each cluster in consecutive rounds.



6th ICEAF Here successful of the successful of t

Mark region of Interests (ROI)

The last step of the pre processing phase is to mark the regions of interest we have detected and extract them for the post processing phase where the fault and characterization

Mark region of Interests (ROI)

The last step of the image processor is the categorization and characterization for each hot spot (ROI) extracted from the original image.

ROI marking **ROI** extraction Hotspot categorization and characterization based on the shape detected, pixel intensity and temperature

Send detailed report to the controller

interconnection between cells

Fault categorization and characterization

The fault categorization and characterization for each							
hotspot detected by the following criteria			ROI shape	Hotspot detection	Temperature range (°C)	Fault Category	Fault characterization
Temperature (°C)	Severity stage]	No shape	No hotspot detected	0-35	No Fault	Healthy panel
			Small square boxes	Hotspot detected	0-35	Minor Fault	Dusting on panel
0-35	No fault, Minor fault		Small square boxes	Hotspot detected	35-45	Small fault	Dusting on panel, optical
35-45	Small Fault						degradation
45-55	Medium fault		Medium size square boxes	Hotspot detected	45-55	Medium fault	Cell crack, physical damage
55-65	Major Fault		Rectangular shape	Hot spot detected	55-65	Major Fault	PID
65-150	Critical Fault		Box shape	Hotspot detected	65-150	Critical Fault	Shading, faulty interconnections
		J	Rectangular shape	Hot spot detected	65-150	Critical Fault	Faulty bypass diode, broken

Results

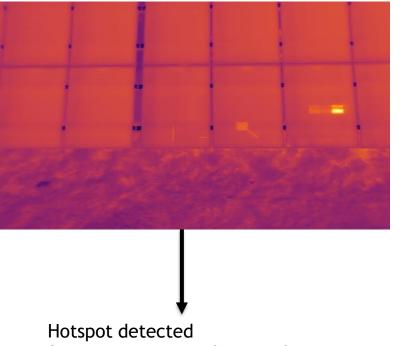
A quick demonstration how the image processor unit operates

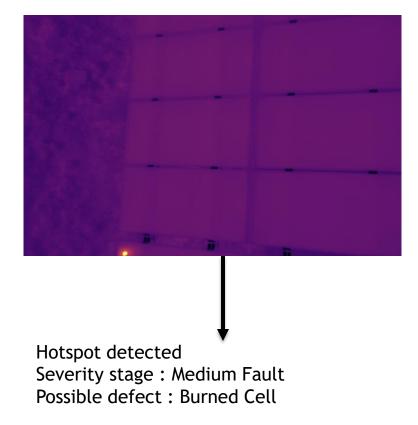
Terminal to run the code

Results

Output generated from the image processor module

report.txt


Results for image 0.tiff there are 1 | hotspots detected |Severity stage |critical fault | Possible Defect | shading | Results for image 1.tiff there are 1 | hotspots detected |Severity stage |critical fault | Possible Defect | shading | Results for image 3.tiff there are 1 | hotspots detected |Severity stage |critical fault | Possible Defect | shading | Results for image 44.tiff there are 3 | hotspots detected |Severity stage |small fault | Possible Defect | Faulty interconnections | Results for image 44.tiff there are 1 | hotspots detected |Severity stage |critical fault | Possible Defect | Faulty interconnections | Results for image 44.tiff there are 1 | hotspots detected |Severity stage |critical fault | Possible Defect | shading | Results for image 114.tiff there are 0 | hotspots detected |Severity stage |-|Possible Defect | None| Results for image 115.tiff there are 0 | hotspots detected |Severity stage |-|Possible Defect | None| Results for image 116.tiff there are 0 | hotspots detected |Severity stage |-|Possible Defect | None|



Results

Indicative results from various flights are presented

Hotspot detected Severity stage : Medium Fault Possible defect : Cell crack, physical damage

THANK YOU FOR YOUR TIME!!

ANY QUESTIONS ?