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Abstract— Unmanned aerial vehicles or so-called drones are
already used in several applications to perform different sensing
and monitoring missions. A central problem is to plan these
missions so as to minimize the completion time. This planning
must also consider the typically limited autonomy of drones and
the need to change their batteries in order to support longer
missions. The problem becomes even harder when multiple
drones are involved and there is uncertainty about the energy
that will be consumed to move between the points of interest in
the target area. In this paper, we present a heuristic algorithm
for tackling this problem in an online fashion, which takes
into account the actual energy costs that occur during the
mission in order to adapt the planned paths. The algorithm
works in an optimistic way, assuming that the costs will not
always be the worst possible. Still, it guarantees that all vehicles
will always make it back to the base station. The algorithm is
evaluated via simulation experiments for a range of scenarios.
Our results show that the proposed heuristic can significantly
reduce the mission time of a conservative offline solution by up
to 51%, while achieving up to 18% better results compared to
a pessimistic online variant that plans the paths of the vehicles
assuming the worst possible costs.

I. INTRODUCTION

There is currently a lot interest in using unmanned aerial
vehicles (UAVs) or so-called drones in many different ap-
plications with a business or purely humanitarian purpose,
such as the delivery of goods, search and rescue missions,
damage assessment after a physical catastrophe, and regular
area patrol/monitoring. The main reason for the steadily
increasing popularity of drones is that they can practically
fly by themselves, with minimum or no involvement from
a pilot, which reduces the room for human error and can
further reduce operational costs. In addition, smaller drones
like polycopters have become very affordable and have the
ability to navigate in a very flexible way, including vertical
maneuvers and hovering over a specific location of interest.

However, planning a mission for drones can be quite
challenging and complex because of several limitations.
Their limited autonomy and takeoff weight may necessitate
intermediate stops to change batteries or restore the payload.
A mission can also have dynamic aspects, such as changes in
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the points/sites to be visited or in their relative importance.
In addition, weather changes, different local weather con-
ditions, unforeseen manoeuvres or battery degradation may
lead to additional delays, increased energy consumption and
decreased autonomy, which has to be taken into account to
adjust the mission accordingly. Notably, besides the obvious
objective of minimizing the mission time, there is also the
equally important requirement of providing strong safety
guarantees, namely to ensure the drone will not exhaust its
energy reserves in the air. This is to avoid undesirable emer-
gency landings, which not only renders the drone unavailable
for a potentially long period of time until it is recovered by
ground personnel, but can also result in material damages or
even human injuries.

In this work, we focus on the uncertainty of the energy that
needs to be spent by the drone in order to move between two
points of interest in the target area. We formulate the problem
as a general dynamic multiple vehicle routing problem,
and tackle it using an online heuristic algorithm. Our main
contributions are: (i) the development of an online algorithm
for this problem, and (ii) the extensive evaluation of the algo-
rithm over a wide range of scenarios, varying the placement
of depot (battery changing) stations, the uncertainty of the
travel costs and the size of fleet. Our results show that the
proposed heuristic can lead to significant optimizations.

The rest of the paper is structured as follows. We start by
giving a brief overview of related work, in Section II. Then,
in Section III, we formulate the problem and, in Section IV,
describe the proposed algorithm. Section V presents our
evaluation. Finally, Section VI concludes the paper.

II. RELATED

The routing and coordination of multiple UAVs has been
researched for different application scenarios, objectives and
assumptions. Besides routing, some works study the place-
ment of drones in the mission area or on the cooperation
between drones and trucks. A recent survey on UAV/drone
routing problems can be found in [1]. Next, we briefly outline
work that focuses on drones only.

The use of drones to assess the damage due to extreme
weather conditions is studied in [2]. Initially, assuming
stochastic weather events, the start positions of the drones are
decided so as to cover a given target area while minimizing
the total setup cost. When an event occurs, the paths to
be followed by the drones are planned so as to minimize
the operating cost and the mission time. Another placement
problem is studied in [3], where a number of provisioning
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facilities have to be placed in the mission area in order to
maximize the delivery of supplies to a set of target locations
while respecting the capacity of each facility and the flight
range of the drones. During the mission, the drones visit one
location at a time, returning each time to a facility, until
their battery is exhausted. To cope with energy consumption
uncertainty, only a percentage of the drone’s battery capacity
is utilized. In [4], multiple drones are controlled by different
ground stations in order to perform a set of tasks. The objec-
tive is to complete the mission under certain constraints, such
as fuel tank capacity, flight time, maximum number of drones
per ground station, while optimizing various objectives, like
the total fuel consumption, the number of drones used, the
total travel distance and mission time as well as the risk of
the mission. The latter depends on several factors, including
having drones that run low on fuel during the mission.

The work in [5] considers drones carrying supplies to
several target locations. Apart from the energy constraints,
drones also have payload limitations and must return to depot
stations in order to reload. The goal is to minimize the
total distance, time or cost of the routes while supplying
the target locations giving priority to the ones with the
greater needs. A similar problem is studied in [6], where
the drone’s energy consumption is a function of its current
weight (frame, battery and payload) and the objective is
to minimize the operational cost given a delivery deadline,
or to minimize the delivery time given a hard budget. [7]
tackles the same problem for specific delivery time windows
while using a more accurate model to estimate the drone’s
energy consumption. Yet another energy consumption model
is introduced in [8], which is derived based on data taken
from a power measurement module on a real drone in
conjunction with the flight distance, speed and turn angles.
The model’s estimates are used in a path planning algorithm
that minimizes the maximum energy consumption over all
drones. The algorithm initially divides the target area in
different regions, one for each drone, and then proceeds to
plan the path for each drone separately.

There is also work on more dynamic aspects of drone
planning/routing. The authors in [9] focus on drones that
perform monitoring missions with a required frequency with
the objective to minimize travel costs and avoiding penalties
due to not meeting the monitoring requirements. Each path
is associated with a different monitoring frequency, which
may change dynamically in a deterministic or stochastic
way. The placement/scheduling of drones in order to monitor
both static and moving targets is studied in [10], so as to
minimize the number of drones needed or the total energy
consumption. A pickup and delivery problem is studied in
[11] for drones that can swap their batteries at specific
stations, with the objective to avoid having drones that run
out of battery and to minimize delivery time and unnecessary
movements. A similar problem is considered in [12] for
a heterogeneous fleet of drones, taking into account the
capacity, the energy and the maximum speed of each drone.

Although some works, like [4] and [3], acknowledge the
issue of uncertainty regarding the energy consumption of

drones, they do not deal with this issue during the mission.
This problem is tackled in [13], which presents an algorithm
that dynamically adjusts the paths of drones based on the
actual energy consumption experienced during the mission.
To guarantee safety and ensure that the drones will not
exhaust their energy budget in flight, the algorithm works
in a very pessimistic way, planning the paths to be followed
by the drones based on the worst possible energy costs.

Our work tackles the same problem as [13]. However, we
propose an optimistic heuristic, which plans paths based on
more realistic estimates about the energy costs, while still
keeping the risk of energy exhaustion to zero. Thanks to its
optimism, the algorithm is able to find consistently better
schedules across a very wide range of scenarios.

III. PROBLEM FORMULATION

Our work is motivated by drone-based applications, in
particular those using polycopters, such as quadcopters and
hexacopters, which have limited autonomy. Still, the problem
we study holds for other types of drones and vehicles as
well. Therefore, we formulate the problem as a general multi
vehicle routing problem.

A. Mission area topology

The target area is modelled as a directed graph G =
(N , E), whereN is a set of nodes ni and E is the set of edges
ei,j representing the ability of a vehicle to move directly from
node ni to node nj . In order for the vehicle to move, it has
to spend some of its energy. However, it can also gain energy
at so-called depot nodes, which represent battery switching
or refueling stations. Without loss of generality, we assume
that the set of depot nodes D is disjoint from the set of nodes
V that have to be visited by the vehicles, D ∩ V = ∅. The
nodes in G include the nodes to be visited and the depot
nodes, N = V ∪ D.

B. Energy costs and gains

Each vehicle has a maximum energy capacity B. This
represents the capacity of its battery (or the size of its fuel
tank). The vehicle’s energy reserves change as it moves
between nodes. More specifically, when the vehicle traverses
an edge ei,j , the remaining energy is reduced. Let ci,j be the
energy cost for the hop from ni to nj . Conversely, when a
vehicle is on a depot node ni ∈ D it restores its energy to
the full capacity B. We assume that depots can always fully
restore the energy reserves of any vehicle.

Let b be the energy/battery reserves of the vehicle at a
given point in time. Then, the energy that remains available
if the vehicle moves from node ni to nj is:

rem1(b, ni, nj) = b− ci,j (1)

Note that if the start node is a depot, ni ∈ D, the vehicle
will perform this hop starting with the maximum energy
reserves b = B. If rem1(b, ni, nj) ≤ 0 then the vehicle has
exhausted its energy and stops operating without completing
the hop. The energy gain at the destination node nj (if this
is a depot) is not taken into account in Equation 1 because



it cannot be used to perform the hop in question. However,
the depot can be exploited before attempting the next hop.

C. Paths and path feasibility

We model a path p as a node sequence p[k], 1 ≤ k ≤ |p|,
where |p| is the number of nodes in p. A path is non-empty
if it includes at least one hop, |p| ≥ 2. Note that in order
for p[k] = ni ∧ p[k + 1] = nj to hold, there has to be a
corresponding edge ei,j ∈ E . We also say that ei,j ∈ p.
Also, let p[k1 : k2] denote the part of p starting from node
p[k1] and ending at node p[k2].

Based on the above, the remaining energy of the vehicle
if it starts with energy reserves b and travels along path p,
can be expressed as follows:

rem(b, p) =

{
rem1(b, p[1], p[2]) |p| = 2

rem(rem1(b, p[1], p[2]), p[2 : |p|]) |p| > 2
(2)

Namely, if p consists of a single hop, the remaining energy
is given by Equation 1. If p includes more than one hops, the
energy that remains available at the end of p is equal to the
remaining energy for the path without the first hop, starting
with the energy that remains after taking the first hop of p.
In the same spirit as above, this does not include the energy
gain at the final destination node even if this is a depot.

We say that path p is feasible for initial energy/battery
reserves b, if rem(b, p[1 : k]) > 0,∀k : 1 < k ≤ |p|. In other
words, p is feasible if the vehicle will not exhaust its energy
in any hop along p. Finally, let nodes(p) denote the set of
nodes that are part of p.

D. Schedule and time aspects

We assume M vehicles that can be used to follow different
paths in parallel. A schedule (or plan) s consists of the paths
that are assigned to the vehicles. In the general case, each
vehicle will have several paths paths[k], 1 ≤ k ≤ |paths|
where |paths| is the total number of paths assigned to it.
Each such path starts from a depot node, paths[k][1] ∈ D,
and ends at a depot paths[k][|paths[k]|] ∈ D. Further, the
end node of a path is the same as the start node of the next
path, paths[k][|paths[k]|] = paths[k+1][1]. The reason for
assigning several paths to a vehicle is to make intermediate
stops at depot nodes in order to restore its energy reserves
so that it can safely visit additional nodes of interest. Also,
the vehicles initially start the mission from a depot and have
to return back to a depot after the mission completes.

Let ti,j be the time needed for a vehicle to traverse ei,j . We
assume that ti,j is proportional to ci,j . Then, the completion
time of path p is d(p) =

∑
ei,j∈p ti,j , and the total time

needed for vehicle m to complete all the paths assigned to
it, is d(m) =

∑|pathsm|
k=1 d(pathsm[k]). We assume that the

restoration of the vehicle’s energy reserves at a depot is fast
compared to the travel time and does not affect d(m) in a
significant way. Finally, since vehicles travel in parallel to
each other, the makespan (or completion time) of schedule s
is maxM

m=1d(m). This is the time it takes for the last vehicle
to complete all the paths that have been assigned to it.

E. Problem statement

The objective is to find a feasible schedule s such that
all nodes of interest are visited ∪Mm=1nodes(pathsm) = V
while minimizing the makespan maxM

m=1d(m).
Our work tackles a dynamic version of the problem, where

there is some uncertainty about the travel costs that will
occur during the mission. More specifically, we assume that
the edge costs ci,j follow a known distribution in the range
[cmin

i,j ..cmax
i,j ] but the actual cost that will be incurred when a

vehicle performs a hop is not known beforehand. Since ti,j
is proportional to ci,j , there is also uncertainty regarding the
time it takes to perform a hop. An offline solution to this
problem can be quite suboptimal. Therefore, we propose an
online method that takes planning decisions at runtime.

We study the problem for the case where there is a single
depot node, let this be nd. Thus, every path p assigned to a
vehicle starts from this node, p[1] = nd, and ends at this
node, p[|p|] = nd. Also, in order for the problem to be
always solvable, we assume that B is sufficiently large so
that, starting from nd, a vehicle can visit any node ni ∈ V ,
and then return back to nd, even if every single hop over
edge ei,j incurs the maximum possible cost cmax

i,j .

IV. ALGORITHM

We propose a heuristic that starts from an initial schedule
(path plan) and then adjusts it during the mission time using
large neighbourhood search (LNS). The main characteristic
of the algorithm is that the paths are planned based on
optimistic estimates about the travel costs. If the actual costs
turn out to be lower, an attempt is made to find a better plan.
Else, if a path turns out to be risky based on the current
energy reserves, a detour is introduced back to the depot. In
the following, we explain the most important elements of the
heuristic and provide an algorithmic description for it.

A. Schedule representation and state information

The schedule is internally captured using M tuples
of the form 〈paths[], remest[], curr, remcurr, pos, rempos〉,
one for each vehicle. The paths[] field is the list of paths
assigned to the vehicle (as discussed in Section III-D), sorted
in descending order with respect to their energy costs. Also,
remest[k] is the remaining energy of the vehicle at the end
of paths[k] as estimated in the planning phase. This is equal
to rem(B, paths[k]) since each path starts from the depot.

Each vehicle follows the paths in the order these appear in
its paths[] list. The index of the path that is currently being
followed is kept in curr. The estimate for the energy that
will remain available at the end of the current path is updated
after each hop, and is kept in remcurr. This is used to
detect major deviations vs. the initial estimate remest[curr].
Finally, pos records the position of the vehicle in the current
path, while rempos is the remaining energy of the vehicle at
that position. Each time the vehicle begins to pursue a new
path, pos = 1. Also, rempos = B since every path starts
from the depot node nd.



B. Cost estimation

Path construction is done so as to minimize the makespan
(Section III-D) while ensuring feasibility (Section III-C).
Since the actual travel costs are unknown, feasibility checks
are based on estimations about the energy that will be
required by the vehicle to perform the planned hops.

More specifically, the algorithm uses a plug-in function
est() that provides estimates for the travel costs. This func-
tion is configurable to be able to experiment with different
estimation methods without modifying the algorithm. The
most conservative approach is let est(ci,j) = cmax

i,j , i.e., to
pessimistically assume that each hop will incur the maximum
possible energy cost. In this work, we explore more opti-
mistic estimates which are lower than the worst-case costs.

Notably, the algorithm is designed to be fully safe. In other
words, it guarantees that all vehicles are able to return to the
depot node, even in the worst-case scenario where the travel
costs are the maximum possible. This safety is achieved in
an elaborate way, making it possible to find better schedules
compared to fully conservative planning.

C. Core logic

Given an initial schedule, each vehicle starts with the first
path in its list. Thus, curr = 1, remcurr = remest[curr],
pos = 1 and rempos = B (every path starts from the depot).
Then, as long as some vehicles are still active, their status is
tracked and the plan is adapted accordingly. The core logic
of the heuristic is given in Algorithm 1.

After each hop, pos is incremented, rempos is set to the
remaining energy at this position, and remcurr is updated to
contain the new estimate for the remaining energy at the end
of the current path, based on the actual costs for the hops that
have been performed so far. It is then checked whether, based
on rempos, the vehicle can afford to make the next hop, from
node nj = paths[curr][pos] to nk = paths[curr][pos+ 1],
and still be able to return to the depot nd, even under worst-
case travel costs. This safety check is expressed as

rempos − cmax
j,k − cmax

k,d > 0 (3)

If Equation 3 does not hold, a so-called detour is intro-
duced so that the vehicle returns to the depot, and the rest of
the path is added as a new path starting from the depot. Also,
a replan attempt is made just in case the vehicle may visit
some more nodes of interest on its way back to the depot.

If Equation 3 holds, it is checked whether the updated
estimate for the remaining energy at the end of the current
path is significantly higher than the initial estimate

remcurr − remest[curr]

remest[curr]
≥ Devreplan (4)

in which case, a replan attempt is made. The rationale is to
exploit the extra available energy to find a better plan. The
replan threshold Devreplan is configurable. Note that if the
cost estimation is pessimistic, assuming the maximum travel
costs, it is guaranteed that Equation 3 will always hold. As a
consequence, no detours will ever be produced in this case.

Algorithm 1 Online path planning algorithm.

function PLAN(s,V, nd)
while ∃m : s[m].curr ≤ |s[m].paths| do

replan← false
for each m that performs its next hop do

UPDATEVEHICLESTATE(s[m])
end for
if replan then LNS(s,V, nd)
end if

end while
end function

function UPDATEVEHICLESTATE(s[m])
if pos = |paths[curr]| then . was last hop

if curr < |paths| then . not done
curr ← curr + 1 . start next path
pos, rempos ← 1, B . restore at the depot
remcurr = remest[curr]

else
replan← true . exploit free vehicle

end if
else

ni ← paths[curr][pos]
nj ← paths[curr][pos+ 1]
pos← pos+ 1
rempos ← rempos − ci,j
remcurr ← remcurr + (est(ci,j)− ci,j)
nk ← paths[curr][pos+ 1]
if rempos − cmax

j,k − cmax
k,d ≤ 0 then

ADDDETOUR(paths, curr, pos)
replan← true . exploit return to depot

else if remcurr−remest[curr]
remest[curr]

≥ Devreplan then
replan← true . exploit extra energy

end if
end if

end function

function ADDDETOUR(paths, curr, pos)
p = paths[curr]
p1← p[1 : pos] + nd . detour to depot
p2← nd + p[pos+ 1 : |p|] . remaining path
replacePath(paths, curr, p1)
insertPath(paths, p2)

end function

Finally, a replan attempt is made when a vehicle completes
the paths assigned to it. This is to correct any imbalance by
letting the free vehicle take over some of the nodes assigned
to other vehicles, which can further reduce the makespan.

D. Path replanning

The replanning step is performed by running a large
neighbourhood search (LNS) algorithm [14]. In a first step,
some nodes are removed from the planned paths. We use a
proximity-based policy, which randomly picks some nodes
and then removes those nodes along with their nearest



Fig. 1: Depot placements with respect to the target area.

neighbours (based on the Euclidean distance between them).
In a second step, these nodes are re-inserted to some (pos-
sibly different) paths. This is done using a greedy heuristic,
whereby a node is inserted in a path so that the total
makespan of the schedule is minimized. Ties are broken
by picking the insertion that minimizes the increase in the
completion time of the vehicle to which the node is assigned.

The feasibility of the constructed paths is checked based
on the estimated travel costs est(ci,j). In addition, the safety
check as per Equation 3 is performed before changing the
next hop in the current path of any vehicle, ensuring that the
vehicle will be able to return to the depot even under the
worst-case travel costs. If a node can not be inserted in any
path under these constraints, a new path is formed, with that
node being the only node in the path. This path is assigned
to a vehicle so that the schedule’s makespan is minimized.

V. EVALUATION

We evaluate the algorithm for various scenarios regarding
the depot placement, the uncertainty of travel costs, the de-
gree of optimism and the number of vehicles, via simulations.

A. Topology

The target area in our experiments is a square region where
the points of interest (nodes) are arranged in a 11×11 grid, as
illustrated in Figure 1; the nodes are at the line intersections.
We assume a region where vehicles can move in a straight
line between any two nodes, which is realistic for drones.

For the depot node, we investigate three placement sce-
narios. In the central placement scenario, the depot is at
the center of the target area. In the border scenario, it is at
the borderline of the area. Finally, in the distant scenario,
the depot is placed further away from the target area, at a
distance equal to the size of the edge of the square area.

B. Energy costs and uncertainty

The edge/travel costs ci,j follow a uniform distribution
[cmin

i,j ..cmax
i,j ], with an expected cost cavgi,j . We set cavgi,j equal

to the Euclidean distance between ni and nj . The minimum
and maximum costs depend on the degree of uncertainty. In
low uncertainty, cmin

i,j = cavgi,j × 3
4 and cmax

i,j = cavgi,j × 5
4 .

In high uncertainty, we set cmin
i,j = cavgi,j × 2

3 and cmax
i,j =

cavgi,j × 4
3 . Without loss of generality, we let travel time be a

linear function of edge cost.
To ensure that the problem has a safe solution, we set

the maximum capacity B of the vehicles equal to the round

trip cost from the depot to the farthest node(s), assuming the
worst-case cost cmax

i,j for each hop. Thus, B has a larger value
in scenarios with a higher cost uncertainty and/or where the
depot is further away from the center of the target area.

C. Cost estimation

We test the algorithm for two optimistic variants of the
cost estimation function est(ci,j). In the aggressive variant,
the function returns cavgi,j , whereas in the moderate variant

it returns
cavg
i,j +cmax

i,j

2 . Note that the latter estimate is more
conservative compared to the former. We run all variants
with a replan threshold of Devreplan = 5%.

As a reference, we also run the algorithm in the most
pessimistic variant, where the cost function returns the worst-
case cost cmax

i,j (this is equivalent to the algorithm described
in [13]). Moreover, we report the results achieved by an
offline oracle algorithm that has perfect a priori knowledge
of the actual cost of each hop during the mission.

D. Results

For each depot placement and cost uncertainty scenario,
we run the variants of the algorithm for 5 different initial
schedules and 50 different randomly generated edge cost
settings (based on the respective cost distribution). The initial
placements are produced using the offline algorithm in [15],
which finds good results. The cost estimation function is the
same as in the online algorithm, depending on the variant.

Figure 2 shows the relative makespan achieved in each
scenario by the different configurations of the algorithm for
a fleet of 1, 2 and 3 vehicles. Each boxplot summarizes the
results obtained in the 250 experiments (5 initial schedules,
each for 50 travel cost settings). To make a fair comparison,
between plans that are safe and ensure that the vehicles
do not exhaust their energy, the reference for the online
variants is the plan produced offline using pessimistic cost
estimates. Note that the absolute values are different for each
topology and uncertainty. Also, since different uncertainties
lead to different actual travel costs, the respective schedules
produced by the oracle differ too in each case.

We observe that all online variants achieve increasingly
better results as the depot is placed further away from the
target area. This is because the offline plan becomes in-
creasingly suboptimal as the worst-case travel costs increase,
and thus there is more room for improvement. Similarly, the
results achieved for the high uncertainty are generally better
than for low uncertainty. Again, the reason is that higher
uncertainty increases the worst-case costs thereby creating
more room for improvement vs. the offline solution.

Notably, the aggressive variant achieves worse results
than the pessimistic variant in the central and border depot
scenarios. It manages to achieve consistently equal or slightly
better results only in the distant depot scenario. The reason
is that it is overly optimistic and often produces paths which
turn out to be risky (paths where at some point Equation 3
no longer holds). This, in turn, leads to a large number of
detours (see Figure 3a) which also translate to more trips
back to the depot (see Figure 3b).



(a) 1 vehicle

(b) 2 vehicles

(c) 3 vehicles

Fig. 2: Relative makespan vs. offline for the different depot
placements with 1, 2 and 3 vehicles.

In contrast, the moderate variant outperforms both the
pessimistic and the aggressive variant in all cases, reducing
the makespen by up to 51% vs. the offline solution and up to
18% vs. the pessimistic variant. This shows that optimistic
planning can lead to significantly better results – provided

(a) Detours due to energy deficit

(b) Depot visits

(c) Replans due to energy surplus

Fig. 3: Features of the plans produced for the different depot
placements (average over all uncertainty/vehicle scenarios).

the degree of optimism is not excessive. Note that in the
distant depot scenario, the difference with the pessimistic
variant becomes quite significant for 1 vehicle, whereas all
variants achieve similar results for 2 and 3 vehicles. Also, in
the distant depot scenario with 3 vehicles, the results become



quite close to the ones of the oracle. This is because a larger
number of vehicles decreases the number of assigned paths
per vehicle, which also reduces the opportunities for very
significant optimizations.

As can be seen in Figure 3a, the moderate variant intro-
duces significantly fewer detours than the aggressive variant;
in fact, the number of detours remains practically constant
across all depot placements. This clearly shows that the
paths produced by the moderate variant are more realistic
compared to those of the aggressive variant. The aggressive
variant introduces significantly fewer detours in the border
and distant depot scenarios. In these cases, vehicles have
larger energy capacity hence any cost deviations that occur
when the vehicle is in the target area become less critical with
respect to the safety of the planned paths (it becomes more
likely for Equation 3 to hold despite cost deviations). Note
that the pessimistic variant does not perform any detours
because the actual costs cannot possibly be larger than the
(worst-case) estimates.

In Figure 3b, we report the number of intermediate depot
visits in order for the vehicles to restore their energy reserves
during the mission. The moderate variant consistently leads
to fewer visits than all other variants. This difference is more
significant in the central and border depot scenarios, which
also explains the notably lower makespan achieved in those
cases (see Figure 2). Note that the aggressive variant leads
to almost as many depot visits as the pessimistic variant.
Still, the makespan of the aggressive variant is worse or
equal to the pessimistic variant in the central and border
depot placement scenarios (see Figure 2). We attribute this
to the fact that the aggressive variant performs a much larger
number of detours. Even though each detour practically also
triggers a replan, which may avoid a depot visit (as can be
seen by comparing Figure 3a with Figure 3b), replanning out
of need, under the pressure of energy deficit, is apparently
more disruptive and leads to lower-quality paths compared to
replanning under energy surplus (also compared to the initial
path planning that is performed offline).

Figure 3c shows the number of replans due to energy
surplus. Note that the trend is opposite to that of the detours,
namely the number of replans decreases with increasing
degree of optimism. The more optimistic the estimate of
travel costs, the less likely it is for the actual aggregate cost to
be smaller than the estimate, so that the respective deviation
becomes not only positive but also larger than the replan
threshold. As expected, the pessimistic variant performs the
largest number of replans. Since all cost estimates are made
based on the maximum possible costs, the actual costs will
turn out to be significantly lower with high probability hence
Equation 4 holds more often compared to other variants.

Finally, it is worth noting that the moderately optimistic
variant performs quite well even compared to the oracle.
More specifically, the average makespan over all uncertainty,
depot placement and vehicle scenarios, is only about 1.2x
larger than that of the oracle. Nevertheless, this also shows
that there is still some room for improvement, which we
intend to explore in future work.

VI. CONCLUSION

We have presented a new, optimistic algorithm for tack-
ling the dynamic multiple vehicle routing problem under
uncertainty about the energy that will be spent for travel.
Our evaluation for a wide range of scenarios shows that
the algorithm can significantly reduce the makespan of a
mission vs offline planning. Also, if the level of optimism
is kept moderate, the algorithm consistently outperforms the
pessimistic online variant and reduces the number of depot
visits during the mission.

Motivated by the room for improvement vs the plans that
are produced by the oracle algorithm, we intend to investigate
adaptive cost estimation policies, which adjust the level of
optimism as a function of the travel costs that are experienced
during the mission. We also wish to explore scenarios where
the degree of uncertainty for the travel costs changes in time
and/or varies between different regions within the target area.
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