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Abstract—One of the challenges in drone-based systems is
to support automated landing with a high precision that goes
beyond the accuracy of standard off-the-shelf GPS. Various
efforts have been made to support this, mainly using vision-
based and infrared sensors. However, using a single sensor
inevitably introduces a single point of failure. To address this
problem, we combine a vision-based sensor that detects special
visual markers with a sensor that tracks an infrared beacon.
We also support a more cautious landing approach for the case
where these sensors temporarily fail to detect their targets. We
implement our solution in the context of a mature autopilot
framework, through modular extensions that are transparent to
the rest of the software stack. We evaluate these mechanisms by
conducting field experiments using a custom drone, activating
faults in the individual precision landing sensor subsystems in
a controlled way through interactive commands that are sent to
the drone at runtime. The results show that our solution achieves
robust precision landing under different failure scenarios while
maintaining the accuracy of fault-free sensor operation.

Index Terms—drones, autopilot, precision landing, marker
detection, fault-tolerance, ArduPilot, IRLock

I. INTRODUCTION

Multi-rotor unmanned aerial vehicles (drones) are rapidly
growing in popularity, playing an increasingly important role
in several applications such as courier and delivery services,
structural health monitoring search and rescue operations and
surveillance. What drives their widespread use is the fact that
drones can pilot themselves in a highly autonomous manner.
This makes it possible even for inexperienced persons to fly
a drone, simply by issuing high-level commands. In the same
way, a drone can be flown by a computer program, with little
or no human involvement. This opens the way to a new class
of automated drone-based systems.

In order to move towards full automation, the drone must be
able to take-off and land autonomously. Take-off is typically a
straightforward process. Landing, however, can be more tricky.
Even though the drone can navigate based on its on-board
GPS, the accuracy is typically within a 1-2 meters [1]. This is
typically unacceptable if the drone needs to land on a hangar
platform or a battery recharging pad.

This research has been co-financed by the European Union and Greek na-
tional funds through the Operational Program Competitiveness, Entrepreneur-
ship and Innovation, under the call RESEARCH - CREATE - INNOVATE,
project PV-Auto-Scout, code T1EDK-02435.

While different sensing technologies have been developed
to support landing with high precision, the usual approach is to
pick one and integrate it in the drone platform. However, this
inevitably introduces a single point of failure. In this work, we
increase the robustness of precision landing, making it possible
to tolerate failures of individual sensor subsystems, which may
occur due to the limitations of a particular sensing technology
or mere hardware malfunctions of the respective subsystem.

The main contributions of this work are: (i) We develop
a new precision landing sensor subsystem, using a low-cost
on-board RGB camera combined with software that detects a
special visual marker on the landing zone. (ii) We aggregate
the values produced by the marker sensor with those of a
mature infrared precision landing sensor, to tolerate a single
independent failure of any one of the two sensor subsystems.
(iii) This extra functionality is smoothly integrated in the
popular open-source ArduPilot framework [2], which is widely
used in numerous drone platforms. (iv) We introduce a more
cautious precision land mode to handle the case where both
sensors fail to detect their targets at the same time. (v) The
improved precision landing capability is extensively evaluated
via field tests using a custom drone. Our results show that our
mechanisms provide increased robustness for a range of failure
scenarios, and that the marker sensor achieves comparable
accuracy to the infrared sensor under normal light conditions.

The rest of the paper is structured as follows. Section II
gives an overview of indicative related work. Section III
describes our implementation and integration with the ArduPi-
lot framework. Section IV presents an evaluation of our
mechanism, focusing on indicative results obtained in our field
experiments. Finally, Section V concludes the thesis and points
to directions for future work.

II. RELATED WORK

A large body of work investigates methods for detecting
pre-defined shapes using a camera at the bottom of the UAV.
In [3], autonomous landing on a ship is achieved using a line
segment processing technique to detect a standard “H” mark
on the landing deck. The same mark is used in [4] with an
additional circle around it to enable detection of the landing
area from larger distances/heights. The work in [5] proposes
a mark consisting of two rings and two upside-down triangles
that can be detected from different altitudes, while [6] uses two
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adjacent diagonally-placed squares of different size to provide
full 3D position estimation, roll, pitch and yaw. A custom
stripped pattern is tracked in [7] and [8] using an optical flow
sensor along with an IMU and an altimeter to support precision
landing on stationary and moving landing pads, respectively.

Another popular approach is to use special visual markers.
In [9], an on-board camera is used to determine the 3D
position and orientation between the UAV and an AprilTag,
guiding the drone accordingly. [10] proposes a custom ArUco
marker, which consists of a small marker nested inside a bigger
one, and validates the approach through real flight tests for a
landing pad mounted on a moving vehicle. The work in [11]
employs two AprilTags placed at a known distance from each
other to detect the landing target from different altitudes. A
more elaborate design is presented in [12], featuring multiple
ArUco markers in different sizes surrounded by a circle with
another nested marker at the center, leading to improved
detection from both high altitudes and very low heights.

Technologies based on infrared LEDs and corresponding
sensors have also been successfully used for precision landing.
The work in [13] tracks four IR beacons arranged in a “T”
pattern to extract the 3D position and yaw of the UAV. A
similar approach is followed in [14], using four beacons with
a different placement. [15] employs the IRLock sensor to track
a MarkOne beacon, together with a rangefinder that returns the
vertical distance to the landing position. A more complex IR
source is used in [16], consisting of 2×72 LEDs, detected by
the drone via a Raspberry Pi NoIR camera.

Some work uses both visual and infrared technologies. For
instance, [17] combines a visual “H” mark with 4 IR LEDs at
its corners. The latter are used to detect the landing position
from large distances using the front-view camera of the UAV,
while the former is used in the final phase of the landing
process once the image appears in the field-of-view of another
camera mounted at the bottom of the vehicle. A special landing
pad is presented in [18], featuring an ArUco marker with a
translucent white acrylic surface back-lit by an array of 264 IR
LEDs. This makes the marker visible for a conventional RGB
camera (without an IR filter) even at poor light conditions.

The vast majority of the approaches proposed to support
precision landing of UAVs rely on a single sensor. Also,
work that combines different sensors typically uses them
interchangeably, depending on weather conditions or the phase
of the landing process. In our work, we use two different
sensors concurrently and combine their information in order to
tolerate independent failures of any single sensor subsystem.

III. IMPLEMENTATION

A. The ArduPilot framework

Our implementation is based on the open-source ArduPi-
lot [2] framework (APM), a popular autopilot system used
in multi-copters, helicopters, rovers and other vehicles. The
software architecture of ArduPilot is shown in Figure 1.
Among other basic functions, the core libraries provide support
for attitude and position estimation using an Extended Kalman
Filter (EKF), precision landing control and motor control.

Fig. 1: Software structure of the ArduPilot framework.

Fig. 2: ArduPilot control flow with precision landing.

Each sensor is accessed via its front-end driver through
an interface that consists of several function calls. In turn,
the front-end is responsible for invoking the back-end(s) in
order to retrieve the data produced by the respective physical
sensor(s). There are libraries that implement a variety of such
drivers, e.g., for the IMU, the barometer, the GPS, the IRLock
subsystem and the motors of the vehicle. Notably, ArduPilot
is portable to a large number of platforms and also supports
a special software-in-the-loop (SITL) configuration.

The main control loop of ArduPilot when precision landing
is enabled is illustrated in Figure 2. The IMU, GPS and
barometer sensors are used to calculate the vehicle’s current
position/attitude, while the IRLock, barometer and range-
finder sensors are used to calculate the vehicle’s position rela-
tive to the landing target. This information is then used to drive
the precision landing of the vehicle by issuing commands to
its motors/actuators in order to adjust the vehicle’s horizontal
and vertical position as needed. The loop runs periodically at
a frequency of 400 Hz. In case the precision landing sensor
fails to provide a valid value, the landing approach continues
based only on the estimated drone position.

ArduPilot already provides support for the IRLock target
tracking mechanism [19]. IRLock is based on the Pixy camera
sensor [20] with special firmware that tracks and reports
the position of LEDs at 50 Hz. IRLock can be used in
combination with the MarkOne beacon to provide reliable
detection in practically all lighting conditions with a range
up to 15 meters. Note that IRLock only provides horizontal
displacement information, thus the ground distance has to be
provided by a barometer or a range-finder.



Fig. 3: Design of the marker sensor subsystem.

B. Marker sensor subsystem

Visual markers are often used in robotics to support au-
tonomous navigation. In our work, we employ fiducial mark-
ers [21] with a black border and an inner region that encodes
a binary pattern. Marker detection is done using the ArUco
library [22] on top of OpenCV [23]. ArUco also supports the
detection of fractal markers [24].

The marker sensor subsystem is implemented using an on-
board System-on-Chip (SoC), based on Raspberry Pi (RPi)
model B with a low-cost camera module v2 configured at a
resolution of 640 × 480 (480p) with a rate of 30 fps. The
RPi runs the ArUco library to detect the marker in the frames
captured by the camera. When the marker is detected in a new
frame, the estimated camera position relative to the center of
the marker is calculated and made available to the autopilot.
The frame capture and processing delay is about 50 ms.

The new sensor subsystem is integrated into the ArduPilot
framework following the standard front-end driver and back-
end scheme, as shown in Figure 3. The marker detection
SoC sends the position estimation information to the back-
end of the marker sensor subsystem over a serial connection
via the MAVLink protocol [25] using a special message we
introduce for this purpose. Each time the back-end receives
such a message, it calculates the vehicle’s relative position and
distance to the center of the marker. The main control logic of
the autopilot retrieves this information from the corresponding
front-end. Notably, the marker sensor also provides an estimate
for the distance of the vehicle to the center of the marker, thus
it can be used without an extra sensor for altitude information.

C. Sensor aggregation

To tolerate individual failures of the IRLock and marker
sensor, we aggregate the input received from both subsystems
by introducing a meta-sensor, which is accessed by the main
control logic of the autopilot as usual, through a front-end
driver. In turn, the front-end driver invokes the IRLock and
marker sensor back-ends to obtain the corresponding position
information, which is then combined to provide the informa-
tion sent to the autopilot.

The aggregation logic of the front-end is shown in Figure 4.
If both sensors produce a new value, the two values are
combined by calculating their weighted average. The weights
are configurable in order to support flexible experimentation.
Aggregation is done only for the horizontal position as IRLock

Fig. 4: Sensor aggregation logic.

does not provide any ground distance information. If only one
of the sensors produces a new value, the front-end returns this
value to the autopilot. Finally, in case no sensor produces a
new value, the front-end returns the last value, provided this is
sufficiently fresh, else, it reports that it cannot provide a valid
measurement. To deal with the latter case in a more graceful
manner, we introduce an additional extension to the autopilot,
discussed in the following.

D. Cautious land mode

The default operation of ArduPilot in the precision landing
mode is to continue the descend even when the precision
landing sensor fails to provide fresh/valid measurements. To
improve robustness, we introduce a more cautious precision
landing mode.

In a nutshell, if the precision landing sensor does not report
new/valid measurements, the vertical controller of the autopilot
is instructed to pause the descent for a short amount of time.
During this period, the sensor is polled to check if the landing
target is detected. If so, the landing procedure continues as
usual. Else, the controller is instructed to return either to the
last altitude where the target was detected successfully or (if
this fails too) to a back-off altitude from where a fresh landing
attempt is started. The pause period, the back-off altitude and
the number of landing attempts before reverting to the default
mode, are all configurable.

E. Artificial failures

To enable testing in a flexible and reproducible way, we
develop a simple mechanism for introducing artificial failures
to the individual IRLock and marker sensor subsystems. This
is done by modifying the front-end drivers to drop the values
received from the corresponding back-ends.

We support two failure modes: random drop where a
newly acquired value is dropped with some probability, and
systematic drop where an entire sequence of newly acquired
values is dropped. Using these two modes, one can simulate
both sporadic and temporary failures of any sensor subsystem.
The failure mode and its parameters can be set/changed in a
flexible way at runtime, while the drone is in the air, via special
MAVLink messages sent to the drone from a ground station.



(a) Drone on the landing target. (b) Camera sensors (bottom view). (c) Fractal marker with nested IR beacon.

Fig. 5: Custom hexacopter drone and landing pad used in the field experiments.

IV. EVALUATION

We have tested our implementation via extensive simula-
tions, using Gazebo [26] and the official software-in-the-loop
(SITL) configuration of ArduPilot [27]. To support marker
detection in this setup, we developed a special marker object,
extended the default drone model with a second camera and
integrated the marker detection component via ROS [28].

Moreover, we have confirmed the smooth operation of our
implementation and have evaluated its performance via several
experiments in the field, using a drone equipped with the
IRLock and marker sensor subsystems. This section focuses on
these field trials. Next, we describe the experimental setup and
discuss the results that were obtained in different experiments.

A. Hardware setup

The drone used in the field experiments is a custom hexa-
copter, shown in Figure 5a. The autopilot runs on the CUAV
V5 Nano flight controller, which is based on the Pixhawk
FMUv5 platform, designed by CUAV in collaboration with the
PX4 team. The drone also features the Neo v2 GPS/Compass
sensor and an on-board Raspberry Pi (RPi) model B, which
communicates with the autopilot board via the MAVLink
protocol on top of a serial UART interface.

Figure 5b shows the downwards facing IRLock sensor and
the RPi camera module v2 used for marker detection. IRLock
generates data at 50 Hz sent to the autopilot board via I2C.
The RPi camera connected to the RPi is configured to generate
480p images at a rate of 30 fps.

The landing pad, shown in Figure 5c, consists of a fractal
ArUco marker and a MarkOne beacon placed inside the white
part of the nested marker. The beacon’s surface is covered with
a white duct tape (except the IR LEDs) in order for the inner
part of the nested marker to remain white and be correctly
detected by the marker detection software.

B. Test mission

In all experiments, the drone follows a standard mission
specified using DroneKit [29]. An illustration of the mission
is given in Figure 6 showing all major positions and waypoints.
The photo shows the site where all tests where performed (flat
open space with no obstacles).

Fig. 6: Mission plan for the experiments.

The drone is placed at a start position, 2 meters away
from the landing pad. It is then armed and instructed to
take off at a certain altitude (green line). When the drone
reaches the target altitude, it marks its current GPS position
and then follows a horizontal square path (blue line), moving
away from the landing target and then returning back to the
recorded GPS position. The path is defined via four waypoints
(WP1, WP2, WP3, WP4) with the last one being the position
recorded after take-off. To increase the number of runs that
can be performed without recharging, the distance between
two consecutive waypoints is set to 2 meters. When the drone
reaches the last waypoint, it starts the landing approach. If
a precision landing mode is enabled, the drone tries to detect
and land on the center of the landing target (red line). Else, the
drone performs a normal landing approach towards the initial
start position (along the green line).

C. Experimental results

In a first set of experiments, we evaluate our sensor ag-
gregation approach for different failures of the IRLock and
marker sensors. We exploit the developed support for artificial
fault injection to implement the following scenarios: (i) The
IRLock sensor fails systematically once the drone drops to
less than 3 meters from the ground, while the marker sensor
fails systematically as long as the drone is above 3 meters.
(ii) The IRLock sensor fails systematically as long as the
drone is above 3 meters from the ground, while the marker
sensor fails systematically once the drone drops to less than



(a) Landing positions relative to target center (units in cm).

(b) Landing error / distance from target center.

Fig. 7: Sensor aggregation under different failure scenarios.

3 meters. (iii) Both sensors exhibit random failures, with a
probability of 0.75 for the IRLock sensor and 0.50 for the
marker sensor (which has a lower sampling rate). Note that in
this case, both sensors may occasionally fail at the same time.
In all experiments, the weights for the sensor aggregation are
set to favor the readings of the IRLock sensor over those of
the marker sensor whenever both deliver valid measurements.

As a reference, we report the results achieved using the
normal land mode where the drone does not employ any
precision landing sensor. This is equivalent to the scenario
where both sensors fail systematically during the entire landing
approach. We also show results for the ideal scenario where
both sensors function properly during the entire landing ap-
proach. To minimize side-effects due to external factors, all
experiments were performed under normal daylight and light
wind conditions with only a few moderate gusts. We wish
to note that the purpose of these experiments is to evaluate
the ability of our mechanisms to increase the robustness of
precision landing in case of sensor failures, rather than finding
the limitations of each individual sensor and the conditions
under which it will indeed fail to provide valid measurements
(such an exploration is beyond the scope of this paper).

Each scenario was tested 10 times. In each experiment,
we record the landing position of the drone and measure the
landing error, i.e., the distance from the center of the landing

(a) Landing positions relative to target center (units in cm).

(b) Landing error / distance from target center.

Fig. 8: Cautious vs default precision landing mode.

pad. For the normal land mode, the landing error is measured
with respect to the initial take-off position (in this case, the
drone is not even aware of the landing pad).

The results are illustrated in Figure 7. When using the
normal land mode, as expected, the result is heavily affected by
the GPS error [1], with an average landing error of 67.15 cm
and a worst case of 180 cm away from the initial position.
Obviously, this is unacceptable if the drone is required to land
inside a limited area or on a small platform.

The landing accuracy improves substantially when using the
aggregation meta-sensor, even when the individual physical
sensors experience systematic failures. As long as the sensors
do not fail at the same time (IRLock Below 3m - Marker
Above 3m / IRLock Above 3m - Marker Below 3m), the meta-
sensor masks the failures and the drone lands with the same
accuracy as when both sensors function properly (IRLock
None - Marker None). Note that the marker sensor guides
the vehicle equally well to the IRLock sensor. In all the above
cases, the average error is about 15 cm and the worst case error
is roughly 25 cm, an order of magnitude lower than landing
without having a (working) precision landing sensor.

The landing accuracy decreases in the scenario where both
sensors may fail at the same time (IRLock Random 0.75 -
Marker Random 0.50). Since these double failures cannot be
masked by the meta-sensor, they have a visible impact on the



landing accuracy. More specifically, the average error jumps to
about 30 cm and the worst case to more than 46 cm. This is a
deterioration of roughly 2x compared to the scenarios where at
least one of the sensors works properly and the meta-sensor
is able to provide the autopilot with reliable measurements
during the entire landing approach. This further stresses the
importance of being able to tolerate single independent failures
of any of the underlying physical precision landing sensors.

In a second set of experiments, we evaluate the cautious
landing mode where the landing attempt is repeated if the
precision landing sensor fails to provide measurements during
descent. In these trials, we turn-off the IR beacon hence the
IRLock sensor fails systematically. We additionally introduce
an artificial failure in the marker sensor when the drone is
below 3 meters from the ground, so the aggregation meta-
sensor also fails to provide valid values. The proper operation
of the marker sensor is restored during the second landing at-
tempt, allowing the meta-sensor to deliver valid measurements.
As a reference, we use the default mode where the autopilot
continues the descent during the first landing attempt even
though the precision landing sensor stops working properly.

Each test is repeated 10 times, under conditions similar
to those in the first set of experiments. The results are
summarized in Figure 8. As can be seen, the accuracy achieved
by the cautious mode is practically identical to that achieved
in the previous scenarios where at least one of the precision
landing sensors functions properly during the initial landing
attempt. In contrast, when using the default mode, the drone
lands with a much larger error, more than 2x. While the more
cautious approach increases the landing time from 17.5 to 41.5
seconds on average, this extra delay will usually be more than
welcome in return for a more accurate landing, provided the
drone does not need to perform a radical emergency landing.

V. CONCLUSIONS

We have extended the precision landing capability of the
popular ArduPilot by implementing a new sensor subsystem
for the detection of fiducial markers, by adding a meta-
sensor that aggregates the readings of the IRLock and marker
sensor in a transparent way for the rest of the autopilot
framework, and by introducing a more cautious land mode.
Our implementation was tested extensively via simulations,
and was evaluated in the field by injecting artificial faults in the
individual sensor subsystems in a controlled way. Our results
show that our mechanism achieves the desired tolerance to the
failures of any single sensor subsystem at any point in time,
while maintaining good accuracy that is an order of magnitude
better than the normal land mode performed in the absence of
a working precision landing sensor.

Our work opens-up the way for the smooth integration
and experimentation with additional precision landing sensor
mechanisms, which can be based on completely different
technologies, such as magnetic materials or ultrasound signals.
Such technologies could be easily combined with the current
sensor subsystems to further improve the landing accuracy for
applications that have even stricter requirements.
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