Reducing the Mission Time of Drone Applications through Location-Aware Edge Computing

Theodoros Kasidakis, Giorgos Polychronis, Manos Koutsoubelias and Spyros Lalis

Computer Systems Lab ECE Dept, University of Thessaly Volos, Greece

EPANEK 2014-2020 OPERATIONAL PROGRAMME COMPETITIVENESS ENTREPRENEURSHIP INNOVATION

Co-financed by Greece and the European Union

Drones as key system components

System model

- Drone scans an area by going through a list of waypoints
- In each waypoint: takes sensor measurements & processes this data
 - to notify the user or perform some actuation
- Drone has its own onboard computer
 - used to run the application software/logic
 - used to perform the data processing / computations
- Servers near the mission area
 - location of servers is known
 - each server is accessed through a separate WLAN
 - server availability is not guaranteed
- Drone can offload its computation on such servers
 - in an opportunistic, ad-hoc way

Reducing the Mission Time of Drone Applications through Location-Aware Edge Computing

State management

Symbol	Description	
Call	Local end-to-end service call delay.	
Data	Size of service request and reply data	
	that need to be sent over the wireless networks.	
$Proc_s$	Remote service processing time on server s.	
$Call_s$	Remote end-to-end service call delay on server s,	
	including data transfer over the wireless network.	
$Check_s$	Connection & availability confirmation delay	
	when the service needs to be started on s .	
$CheckR_s$	Connection & availability confirmation delay	
	when the service is already running on s.	

Server selection

- $candidate(s) = inrange(s) \land Call_s < Call \land s.state \neq BLACKLISTED$
- $best(s) = candidate(s) \land \nexists s': candidate(s') \land Call_{s'} < Call_s$

•
$$select(s) = best(s) \wedge \frac{Call_{cur} - Call_s}{Call} > Gain_{switch}$$

Service invocation

• $\frac{Call - (Call_{cur} + waitT(Check_{cur}))}{Call} > Gain_{wait}$

- $waitT(X) = X (getTime() t_{check})$
 - X value can be $Check_{cur}$ or $Check_{cur}$
 - t_{check} : time of server selection

Experimental setup

	Input: WPList	▷ waypoints to visit	
	autopilot.arm()		
	autopilot.takeOff()		
	while $WPList \neq \emptyset$ do	,	
	$wp \leftarrow getNxtWaypoint(WPList)$		
	autopilot.goto(wp)		
	autopilot.waitToArrive(wp)		
	$pic \leftarrow camera.takePhoto()$		
	$objs \leftarrow detector.processPhoto(pic)$) ⊳ may be offloaded	
if unexpected(objs) then			
	user.notify(objs)		
end if			
	end while		
	autopilot.returnToHomeAndLand()		
\longrightarrow	autopilot.disarm()		

Service characteristics

- Photos are processed by an object detection service
 - light or heavy mode

- Startup time on the server (load and service start) is about 8 seconds
- Gain thresholds are set both to 25%

Experiments

- Area of 200×200 square meters
- 121 waypoints set every 20 meters
- s1 and s2 with a communication range of about 100 meters
- Drone moves row-wise from the top to the bottom of the area
- Flying speed 4 m/s

Both servers full capacity – light mode

12

- Service invocation delay reduced by 73%
- Mission time reduced by 16%
 - 22.2 vs. 26.5 minutes

Both servers full capacity – heavy mode

13

- Service invocation delay reduced by 86%
- Mission time reduced by 48%
 - 24.4 vs. 47.5 minutes

One server loaded – heavy mode

- s2 processes incoming requests with an additional delay of 7 seconds
- Service invocation delay reduced by 72%
- Mission time reduced by 42%
 - 28 vs. 48.5 minutes
- Naïve (equal) server selection would have increased the mission time by +2.5 minutes

- Service-oriented approach for task offloading
- Part of a full software stack for autonomous drones
- Fully transparent for the application program
- Evaluation shows potential for very significant reduction of the mission time
 - increased operational autonomy/range
- Future work
 - more advanced offloading policies, taking into account the service call rate
 - combination with higher-level server allocation and path-planning algorithms

17

