
Dynamic Multiple Vehicle Routing under Energy Capacity Constraints*

Giorgos Polychronis1 and Spyros Lalis2

University of Thessaly

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/ITSC45102.2020.9294492

Abstract— The multiple vehicle routing problem (mVRP)
concerns the scheduling of multiple vehicles so as to visit
some locations of interest. We study a dynamic version of
mVRP where the travel costs are not a priori known and
may vary at runtime. Moreover, we introduce energy-related
constraints which make the problem more complex. Vehicles
have only finite energy reserves, which gradually diminish as
they move between different locations, but can also gain some
energy at specific depot locations. The objective is to visit all
locations of interest as fast as possible without any vehicle
exhausting its energy. We propose an online algorithm based on
the Large Neighbourhood Search (LNS) heuristic. We evaluate
the algorithm for different topologies and degrees of vehicle
autonomy. Our results show that it achieves significantly better
results than an offline algorithm that produces a safe schedule
based on worst-case cost estimates.

I. INTRODUCTION

Unmanned vehicles (UVs) are becoming more popular
and have the potential to revolutionize several civilian appli-
cation domains, such as agriculture, transport, surveillance.
A common mission pattern is for UVs to visit locations of
interest in order to perform various sensing/actuation tasks.
When planning such missions, one must take into account
the distances that have to be covered by the UVs in order to
reach the different locations of interest as well as the time
and energy that is needed for this.

This problem corresponds to the multiple vehicle routing
problem (mVRP), which has been studied in many forms and
for different optimization objectives. Particularly challenging
are the dynamic variants of mVRP, where new locations of
interest may appear while the planned trip is still in progress,
or the cost of travel between the locations to be visited may
differ from what was initially assumed during planning.

In this paper, we also tackle a variant of the dynamic
mVRP where the travel costs can vary at runtime. We let the
travel cost correspond to the energy spent by a vehicle in
order to move between two locations, and introduce special
depot nodes that can be used to restore the energy reserves
of the vehicles. However, we introduce a hard limit for
the maximum energy reserves and do not allow vehicles to
deplete their energy at any point during the mission.

*This research has been co-financed by the European Union and
Greek national funds through the Operational Program Competitive-
ness, Entrepreneurship and Innovation, under the RESEARCH-CREATE-
INNOVATE call, project PV-Auto-Scout, code T1EDK-02435.

1Giorgos Polychronis is a PhD student at the ECE Department, University
of Thessaly, Volos, Greece gpolychronis@uth.gr

2Spyros Lalis is with the Faculty of the ECE Department, University of
Thessaly, Volos, Greece lalis@uth.gr

This formulation closely models the problem of managing
a fleet of UVs that may need to refuel or change batteries in
order to continue their mission. When a UV runs our of en-
ergy, it enters a safe mode, which may involve performing an
emergency landing/parking action, and no longer participates
in the mission.

The main contributions of this paper are as follows. (i) We
describe the above problem in a formal way. (ii) We propose
an online heuristic that adjusts a conservative initial sched-
ule that is constructed based on worst-case cost estimates.
(iii) We evaluate the algorithm for different topologies,
degrees of uncertainty and vehicle autonomy.

The rest of the paper is structured as follows. Section II
discusses related work. Section III gives the problem formu-
lation. Section IV describes the proposed heuristic. Section V
presents our evaluation. Finally, Section VI concludes the
paper and points to some directions for further research.

II. RELATED WORK

The vehicle routing problem (VRP) has been studied for
different dynamic aspects. Indicative surveys can be found
in [1], [2], [3]. Most studies focus on the dynamic arrival of
new targets, also commonly referred to as customers or cus-
tomer requests. Some works consider dynamic travel times
while others address the problem of known customers with
uncertain service needs, which are revealed to the vehicles
and the planning system when a customer is actually visited.
Below, we provide an overview of indicative approaches that
include the aspect of dynamic travel costs/times and are thus
closer to the problem we tackle in this paper.

In [4], the authors address the problem where new cus-
tomer requests arrive online and there is uncertainty re-
garding the travel times. Their online approach re-constructs
the routes of the vehicles by using the insertion heuristic,
every time a new demand arrives or when the travel times
change. They further improve the solution with the Or-opt
algorithm [5], where a segment of a route (a number of
consecutive customers) is moved to a different position.

A genetic algorithm is proposed for the same problem
in [6], where the routes of the vehicles are periodically ad-
justed taking into account the new information that becomes
available regarding changes in the travel times and new
customer requests. Another genetic algorithm is presented
in [7], which is used to produce the initial schedule as well
as to perform any adaptations at a later point in time. In this
case, rescheduling occurs when the estimated travel times for
an edge is updated (once a vehicle reaches a customer) with
the latest information from a dynamic traffic simulator.

In the approach described in [8], every vehicle is allowed
to visit the next customer with some tolerance for delays
beyond the expected arrival times. If this tolerance is ex-
ceeded, the customer is removed from the current route and is
reinserted in the best position in the route of another vehicle.
In a continuation of this work, the customer can also be
added back to the route from where it was removed [9]. In
both cases, the paths after the insertions are further improved
with the CROSS exchange algorithm, which is proposed in
[10] for exchanging entire segments (consecutive customers)
between routes. As a further extension, [11] considers a con-
tinuous tracking of the vehicle, where unexpected delays are
detected earlier, before the tolerance is actually exhausted.

The authors of [12] also deal with the problem of newly
arriving requests, in combination with varying travel speeds.
In this case, the speed of the vehicle is known as soon as
it starts its trip towards the next customer. The routes are
adapted using four metaheuristics. The first two approaches
are based on a dynamic Variable Neighbourhood Search
(VNS) algorithm, based on static and stochastic information,
respectively. Two additional metaheuristics are presented, us-
ing a Multiple Scenario and a Multiple Plan approach, where
multiple solutions are pursued/maintained in parallel, based
on static and stochastic costs, respectively. Both approaches
use as a search procedure the VNS algorithm.

A wider range of dynamic events is considered in [13],
each one possibly necessitating an adaptation of the sched-
uled routes. More specifically, these events are: late arrival
of a vehicle at a customer; timely arrival of the vehicle at a
customer that is no longer valid; cancellation of a customer
request; generation of a new customer request; break-down of
a vehicle; vehicles being stuck in a traffic jam. Two operators
are used to optimize the schedule. In the first case, individual
customers are removed from a route and it is attempted to
insert them in another route. In the second case, customers
are exchanged in a pairwise fashion between routes. The
customer insertions are done greedily. The authors also use
a secondary objective function to drive the local search so
that it focuses on more promising neighbourhoods.

The main difference of our work is that it places a hard
constraint on the energy capacity of the vehicles. As a
consequence, dynamic changes in travel costs have an impact
not only on the optimality but also on the feasibility of the
schedule. Also, any adaptations that are made to optimize the
routes of the vehicles, must take this constraint into account
in order to produce schedules that are actually feasible.

Dynamic routing has also been studied specifically for
drone-based applications. For instance, [14] presents a de-
livery scenario where a fleet of drones is used to ship meals
to locations that become known at runtime. The drones have
payload carrying capacity and energy constraints, and can
swap batteries at depot stations. The objective is to avoid
having drones that run out of energy and to minimize delivery
times and unnecessary flights. A similar problem is studied in
[15] for a heterogeneous fleet of drones, taking into account
the payload capacity, the energy capacity and the maximum
speed of each drone. Although these problems also introduce

hard energy constraints, they do not deal with uncertainty
regarding the energy consumption of the drones.

III. PROBLEM FORMULATION

A. Terrain

We model the terrain where the mission takes place as a
directed graph G = (N , E), where N is a set of nodes and
E is a set of edges. Each node ni ∈ N represents a target
location that has to be visited by a vehicle. Each edge ei,j ∈
E represents a possible movement from node ni directly to
node nj , without going via any intermediate nodes.

B. Energy capacity, costs and gains

The vehicles used to visit the nodes have a finite energy
storage capacity B. This can be thought of as the capacity of
a fuel tank or the capacity of a battery, depending on whether
the vehicles are equipped with internal combustion engines
or electrical motors. Let b ≤ B denote the current energy
budget (reserves) of the vehicle during travel.

When the vehicle moves between two nodes, its motors
consume some of the available energy budget. Let ci,j denote
the cost for moving from ni to nj over ei,j , also referred
to as edge cost. If the vehicle has an energy budget b and
moves from ni to nj over ei,j , the remaining energy budget
will be brem = b− ci,j . If brem ≤ 0, the vehicle exhausts
its energy and becomes non-operational before reaching nj .

The vehicle may increase its energy budget by gaining
energy at depot nodes, which can be refuelling or battery
switching stations. Let gi be the energy that can be gained
at ni. If ni is not a depot, gi = 0.

C. Path feasibility

A path p is encoded as a sequence of nodes, where
p[k], 1 ≤ k ≤ |p| is the kth node in p and |p| is the number
of nodes in the path. Equivalently, let ei,j ∈ p if p[k] = ni
and p[k + 1] = nj for 1 ≤ k ≤ |p| − 1. Note that if p is
non-empty then |p| ≥ 2. Also, let p[k1 : k2] denote the part
of the p that starts from node p[k1] and ends at node p[k2].

Let remb(b, p) denote the remaining budget of the vehicle
if it starts with an initial budget b and travels along path p.
This can be expressed as follows:

remb(b, p) =

{
min(B, b+ gp[1])− cp[1],p[2], |p| = 2

remb(remb(b, p[1 : 2]), p[2 : |p|]), |p| > 2
(1)

Namely, if p consists of a single hop, the remaining budget
is equal to the initial budget plus the energy gain (if any) at
the start node p[1] less the edge cost for moving from p[1] to
p[2]. Note that the gain at the destination node p[2] (if any)
is not taken into account as this cannot be used to perform
the hop in question. If p includes more than one hops, the
remaining budget at the end of p is equal to the remaining
budget for the path without the first hop, starting with a
budget that is equal to the remaining budget after taking the
first hop. In this case too, the remaining budget at the end
of the path does not include the gain at the destination node.

Based on the above, we say that a path p is feasible for
an initial budget b, if remb(b, p[1 : k]) > 0, 1 < k ≤ |p|.
In other words, p is feasible if the vehicle will not exhaust
its energy budget at any point along p. Also, let nodes(p)
denote the set of nodes that are part of p.

D. Path completion time and schedule makespan

Let travel() be a function that transforms edge energy
costs to the corresponding travel times. Then, the time
needed to complete path p is d(p) =

∑
ei,j∈p travel(ci,j).

Notably, we assume that depot service times are negligible
compared to the travel times, which is realistic for conven-
tional refuelling as well as for battery switching stations.

Let a schedule s[] consist of M paths s[m], 1 ≤ m ≤M .
Assuming that each of these paths can be pursued in parallel,
the makespan of s is maxMm=1d(s[m]). In other words, it is
equal to the completion time of the most costly path.

E. Problem statement

Let there be M vehicles that can travel independently.
The objective is to find a feasible schedule (a schedule that
consists of feasible paths), such that the vehicles will visit all
the nodes of interest with the smallest possible delay. More
formally, s[] should be chosen so that ∪Mm=1nodes(s[m]) =
N and maxMm=1d(s[m]) is minimized.

In this work, we focus on a dynamic version of the
problem. Namely, the edge/travel costs are unknown to the
fleet scheduler and may vary in time. More specifically, we
model the edge cost ci,j as a random variable over the range
[cmin

i,j ..cmax
i,j] with an expected/mean value of cmean

i,j . This
problem cannot be addressed in a satisfactory way using an
offline algorithm. Instead, an online algorithm is needed in
order to cope with the system dynamics.

We assume that depot nodes are known in advance and can
always restore the vehicles’ energy reserves to the maximum
capacity B. We let all vehicles start from a depot node,
and require that they also return back to a depot node.
The makespan applies to the successful completion of the
mission: all nodes have been visited and all vehicles have
safely returned to a depot. Last but not least, we assume
no dead-ends, that is, the maximum edge costs cmax

i,j and
maximum capacity B are so that each node can be visited
by a vehicle that starts from a depot and then has enough
energy to return back to a depot.

IV. ALGORITHM

A. Representation of schedules and state information

We represent the schedule and state of a given vehicle as
a tuple (paths[], rembest[], rembupd), where paths[] is the
list of paths that have been assigned to it. Each path starts
from a depot node and end at a depot node, thus the vehicles
always start a new path with the maximum energy budget
B. Note that the end depot node of paths[i] is the start
depot node of paths[i+1]. The estimated remaining budget
after having completed paths[i] is stored in rembest[i] =
remb(B, paths[i]).

The path that is currently followed by a vehicle is always
the first path in the list paths[1]. When this path is com-
pleted, it is removed from the list, and the vehicle begins to
follow the next (first) path in the list. Each time the vehicle
performs the next hop along the current path, it experiences
the actual cost for this movement. This can be different than
what was estimated when that path was planned. To keep
track of this deviation, the updated estimate for the remaining
budget at the end of the current path is stored in rembupd.

The complete schedule and state information s[] is a list
of M tuples, where s[m], 1 ≤ m ≤ M corresponds to the
mth vehicle that is used to visit the nodes of interest.

B. Cost estimation

There are different ways to estimate the remaining budget
when a path is planned or it is updated. One policy could
be to use the average / expected edge costs. Another policy
would be to use the maximum possible (worst-case) costs.

Optimistic approaches may lead to better schedules with
a smaller makespan, but they also introduce the risk of
vehicles exhausting their energy budget and becoming non-
operational. This, in turn, can have a very negative impact
to the mission, and lead to far worse results. Conservative
approaches may generate less optimal schedules but reduce
the probability of some vehicles becoming non-operational.

In this work, we explore the most conservative approach.
Namely, we estimate the remaining budgets based on the
maximum possible (worst-case) edge costs. This way it is
guaranteed that the generated schedules are always feasible
(s[m].rembest[i] > 0,∀m, i). In turn, this guarantees that all
nodes will be visited and all vehicles will manage to return
to a depot. Moreover, this means that any cost deviations
concerning the current path of a vehicle will result in greater
energy reserves than the ones estimated when that path was
planned (s[m].rembupd > s[m].rembest[1]).

C. Main loop

The algorithm starts from an initial (feasible) schedule s[].
Then, the vehicles are instructed to commence the mission,
and start following the paths that have been assigned to them
in the order in which they appear in their path lists.

The high-level logic of the algorithm is shown in the form
of pseudocode in Algorithm 1. Each iteration corresponds
to the attempt of one or more vehicles to perform the
next hop in their current path. If the actual cost for this
movement is different than what was estimated when the path
was planned, the state of the vehicle is updated, adjusting
s[m].rembupd accordingly.

If this wasn’t the last hop along the current path, it is
checked whether there is a large relative deviation between
the updated remaining budget for that path s[m].rembupd
and the corresponding estimate s[m].rembest[1] that was
made when the path was planned. If such a deviation exceeds
a threshold, a flag is set. The threshold for this deviation is
configurable.

The flag is checked after the state of all vehicles has been
updated. If it is set, this triggers a rescheduling attempt. The

heuristic for this is abstracted via function LNS() and is
discussed in more detail in the sequel. The rescheduling may
change parts of the schedule s[], adjusting the paths and state
of the vehicles accordingly. Note that rescheduling does not
change the current destinations of the vehicles, which always
complete the current hop as planned.

The algorithm ends when all vehicles have completed
the paths that were assigned to them. Recall that paths are
planned in a conservative way, thus the schedules generated
are always feasible and no vehicle will run out of energy
during travel.

Algorithm 1 Online scheduling algorithm.

function SCHEDULER(s, threshold, nofmutations)
while ∃m : s[m].paths[1] 6= ∅ do

reschedule← false
for each m performed kth hop along its path do

i, j ← s[m].paths[1][k], s[m].paths[1][k + 1]
s[m].rembupd ← s[m].rembupd+(cmax

i,j −ci,j)
if k 6= |s[m].paths[1]| − 1 then

dev ← s[m].rembupd − s[m].rembest[1]
if dev/s[m].rembest[1] > threshold then

reschedule← true
end if

else
s[m].paths[].pop() . remove first path

end if
end for
if reschedule then

s← LNS(s, nofmutations)
end if

end while
end function

D. Reschedule heuristic

The reschedule optimization technique follows the prin-
ciple of Large Neighbourhood Search (LNS), which was
originally proposed in [16]. Its main advantage is that it can
explore larger neighbourhoods than local search algorithms.
Additionally, with the right removal/reinsertion functions, the
search can check promising neighbourhoods in a fast way.

In our case, we use LNS to find a new schedule by
performing a number of mutations to the current schedule.
The high-level logic of the heuristic is given in Algo-
rithm 2. Each mutation involves (a) the random removal
of some nodes from the paths that are assigned to the
vehicles, and (b) the reinsertion of the nodes that were
removed into the schedule. In each iteration, the number of
nodes to be removed / reinserted is picked randomly. The
bounds for the respective interval are retrieved via function
getNodeBounds(). We configure this function to return the
interval [

√
N..min(N,

√
N ×4)], where N is the number of

nodes that still need to be visited. If the mutation produces a
better schedule (in terms of makespan), it is used as the
basis for the next mutation. The number of mutations is
configurable via the respective parameter.

Algorithm 2 LNS-based schedule optimization method.

function LNS(s, nofmutations)
sbest ← s
lower, upper ← getNodeBounds(s)
repeat nofmutations times

nofnodes← random(lower, upper)
stmp, free← REMOVE(sbest, nofnodes)
snew ← INSERT(stmp, free)
if makespan(snew) < makespan(sbest) then

sbest ← snew

end if
end repeat
return sbest

end function

We have designed the node removal function to work as
shown in Algorithm 3. A number of so-called seed nodes
is picked randomly from the interval retrieved via function
getSeedBounds(). This is configured to return the interval
[1..max(1,

√
N×0.4)]. As above, N is the number of nodes

that still need to be visited. The specific seed nodes to be
removed are chosen randomly out of all the nodes that still
need to be visited. Then, each of the seed nodes along with
some of its closest neighbours (nodes connected to it with
the smallest edge cost) are removed. The number of seed
neighbours to remove is chosen so as to have a balanced node
removal around all seeds. In Algorithm 3, the node removal
procedure is abstracted via the removeNode() function,
which also updates the internal schedule information accord-
ingly. The removal method returns the modified schedule and
the set of nodes that have been removed.

Algorithm 3 Node removal method.

function REMOVE(s, nofnodes)
lower, upper ← getSeedBounds(s)
nofseeds← random(lower, upper)
nofnodes′ ← nofnodes/nofseeds
seeds← pickRandom(s, nofseeds)
snew ← s
free← ∅
for each seed ∈ seeds do

repeat nofnodes′ times
n← fndNearestNode(snew, seed) . incl. seed
snew ← removeNode(snew, n)
free← free+ n

end repeat
end for
return snew, free

end function

The node reinsertion method, is described in Algorithm 4.
A greedy heuristic is followed, whereby each node is inserted
at the best (regarding the makespan) feasible position in
the path of some vehicle. Function findPos() abstracts

the procedure for finding the best possible position in the
schedule of a given vehicle. It returns the suggested path
with the node insertion, the path’s position in the path list
of the vehicle, the updated estimate for the makespan of the
vehicle and the updated makespan for the entire schedule
assuming the suggested insertion were adopted. Note that
only feasible insertions are returned from this function.

Algorithm 4 Node insertion method.

function INSERT(s, nodes)
snew ← s
while nodes 6= ∅ do

tsmin ←∞ . min schedule makespan
tvmin ←∞ . min vehicle makespan
n← randomPick(nodes)
for each m do

p, k, tv, ts ← findPos(n, snew[m].paths)
if ts < tsmin then

mbest, pbest, kbest ← m, p, k
tsmin, t

v
min ← ts, tv

else if ts = tsmin ∧ tv < tvmin then
mbest, pbest, kbest ← m, p, k
tvmin ← tv

end if
end for
snew ← updatePath(snew[mbest].paths[kbest], pbest)

end while
return snew

end function

Each top-level iteration concerns the insertion of a single
node. After checking all vehicles, the best insertion option is
chosen for the given node: the one that leads to the smallest
increase of the schedule makespan, or, in case of a tie, the
one that leads to the smallest increase of the makespan for
the vehicle that will visit the node. The path update process
is abstracted via function updatePath(), which returns the
new schedule with all state information accordingly updated.

If a node cannot be inserted in an existing path (due to the
capacity constraint), a new path is created for visiting that
node, and this is assigned to the vehicle with the smaller
makespan. In this case, the new path is added at the end
of the vehicle’s path list. For the sake of brevity, this is
not explicitly shown in the pseudocode; this special case
is handled in a transparent way by the findPos() and
updatePath() functions.

V. EVALUATION

A. Experimental setup

We evaluate the proposed algorithm using simulations. We
conduct our experiments for a 11 × 11 grid of 121 nodes.
The nodes represent the geographical locations of an area
that has to be scanned by a team of vehicles exhaustively,
by visiting all nodes. We assume that the vehicles can freely
move between nodes in a straight line. This is typically the
case for aerial unmanned vehicles (UAVs) that scan a large

area from a relatively high altitude that keeps them safely
above trees and power lines. Thus, there is an edge between
every two nodes.

The cost of each edge ei,j represents the cost for moving
from ni to nj . This cost is not known with certainty, but ran-
domly varies following a uniform distribution [cmin

i,j ..cmax
i,j].

The upper and lower bounds of the cost distribution are
a function of the Euclidean distance between the nodes’
positions. More specifically, cmin

i,j = α × dist(ni, nj) and
cmax
i,j = β × dist(ni, nj). We investigate scenarios for small

uncertainty (α = 0.5 and β = 1) and large uncertainty
(α = 0.25 and β = 1). Without loss of generality, we let
the travel time be a linear function of the edge cost.

To capture the uncertainty of the travel cost, we create
50 different scenarios. In each scenario, the cost of every
edge is randomly chosen based on the respective random
distribution. The actual cost of an edge is discovered only
at runtime, when a vehicle crosses that edge and reaches the
destination node. Given that each node has to be visited once
and that the graph is fully connected, every edge is traversed
at most once, thus it suffices to have only one randomly
chosen cost value for each edge.

In our experiments we have a single depot node, and
investigate two different scenarios regarding its location. In
the peripheral depot scenario, the depot node is located at
one of the corners of the grid. In the central depot scenario,
the depot node is located at the center of the grid.

We use a fleet of M = 3 vehicles, which all have the
same energy capacity. The capacity of the vehicles is set to
the worst-case round-trip cost, between the depot node and
the node that is farthest away from it. This ensures that it is
indeed possible to visit all nodes, even if the edge costs turn
out to be the maximum possible.

B. Configurations of the online algorithm and reference

We test the online algorithm for various configurations.
On the one hand, we experiment with four rescheduling
thresholds 0.2, 0.1, 0.05 and 0.0, referred to as conservative,
moderate, aggressive and always configurations, respectively.
Recall that lower thresholds lead to more frequent/earlier
rescheduling. In the always configuration the algorithm
reschedules whenever a deviation is experienced, irrespec-
tively of how significant this is relative to the path cost. On
the other hand, we vary the number of iterations in the LNS
component, from 25, 50 to 100 iterations. We refer to this
as low, medium and high search intensity, respectively. Path
changes do not change the current destination of a vehicle
but may affect the remaining path(s). The algorithm executes
quickly (under a second) thus it can run even after every hop
without delaying the vehicles.

As a reference, we use a schedule that is produced offline.
The algorithm we use for this is based on IWO [17], which
provides good results for the min-max mTSP problem. We
extended IWO to tackle the vehicle capacity and path fea-
sibility constraints. The offline schedule is generated based
on the worst-case cost of each edge, and thus is guaranteed
to be feasible (no vehicle will ever run out of energy)

(a) Peripheral depot with small uncertainty (b) Peripheral depot with large uncertainty

(c) Central depot with small uncertainty (d) Central depot with large uncertainty

Fig. 1: Makespan of the online algorithm vs. the offline algorithm.

independently of the actual costs that will be experienced
by the vehicles during the mission. The offline schedules are
also used as the initial schedules for the online algorithm.

C. Results

We run each configuration of the online algorithm 5 times
for each of the 50 edge cost scenarios (for each depot and un-
certainty scenario). Figure 1 shows the average makespan of
the different configurations as a percentage of the makespan
of the offline algorithm. At the top, Figure 1a and Figure 1b
show the results for the peripheral depot scenario, while
Figure 1c and Figure 1d at the bottom show the central
depot scenario. The figures on the left show the results for
the small uncertainty scenario, and the ones on the right for
the large uncertainty scenario. For the two “extremes” of
our experimental study, the improvement varies from 2% for
the most conservative rescheduling and low search intensity
configuration in the peripheral depot node scenario with
small uncertainty, up to nearly 20% for the most aggressive
rescheduling and highest search intensity configuration in the
central depot node scenario with large uncertainty.

Increasingly better results are achieved when the online
algorithm reschedules more aggressively (more often). This
is because the sooner one replans during the mission, the
more likely it is to achieve a significant optimization in
the routes of the vehicles as there are still many unvisited
nodes. More conservative (less frequent) rescheduling misses
such opportunities. Even though the accumulated reserves
are larger in this case, rescheduling takes place after having
visited several nodes, so there are fewer opportunities for
major optimizations. Also, as expected, better results are
achieved for the more intensive search configurations.

The schedule improvements are better under larger cost
uncertainty. Given that path planning is based on worst-

case estimates, any scheduling decisions become increasingly
sub-optimal under larger uncertainty, and this can only be
repaired by rescheduling more often.

Note that the improvements are more significant in the
central depot scenario for the conservative, moderate and
aggressive reschedule policies. The reason is that the paths
are shorter so the respective worst-case estimates are smaller
than in the peripheral scenario. As a consequence, the same
absolute cost deviations meet the respective thresholds more
often, leading to more frequent rescheduling attempts. The
always reschedule policy achieves an equally good improve-
ment in both depot scenarios. In this case, a rescheduling
attempt is done at the slightest cost deviation (even if minor
compared to the estimated path costs), thus rescheduling is
performed equally frequently in both scenarios.

Figure 2 shows the rescheduling and schedule update
frequencies, averaged over all search intensity configura-
tions. These are calculated by dividing the total number of
rescheduling attempts and respectively the total number of
actual schedule updates that were performed during the mis-
sion, by the makespan. In practical terms, this corresponds
to the average number of rescheduling attempts / schedule
updates performed while a vehicle is travelling between two
nodes; values can be larger than 1 as there are many vehicles
that travel concurrently over different distances.

Naturally, the rescheduling frequency (bars) increases with
more aggressive rescheduling and for larger uncertainty. As
discussed above, the conservative, moderate and aggres-
sive policies (non-zero thresholds) lead to more frequent
rescheduling in the central than in the peripheral depot sce-
narios, while the always reschedule policy (zero threshold)
leads to practically the same rescheduling frequency.

The more rescheduling attempts are made, the more likely
it is that at least some of them will succeed, leading to a

(a) Small uncertainty (b) Large uncertainty

Fig. 2: Rescheduling and schedule update frequency of the online algorithm (average over all search intensity configurations).

higher schedule update frequency (lines). Note that conser-
vative and moderate rescheduling leads to a higher update
frequency in the central vs. the peripheral depot scenarios,
whereas the situation is reversed in the aggressive and always
rescheduling policies. Rescheduling attempts are in general
more likely to succeed in the peripheral depot scenarios
because paths are longer hence the worst-case estimates are
also more likely to be overly pessimistic. Therefore, as the
gap of the rescheduling frequency between the two scenarios
shrinks, the schedule update frequency becomes higher in the
peripheral depot scenario. Still, the impact of each individual
update is less significant in the peripheral depot scenario,
which is the reason why practically the same improvement
is achieved in both cases with the always reschedule policy.

While the proposed heuristic clearly outperforms the static
scheduling, it is far from optimal. An oracle with a priori
knowledge of the costs that will be experienced during the
mission, can further reduce the makespan by 25% up to 45%
depending on the scenario. So, there seems to be plenty of
room for optimizations, provided one is willing to risk that
some vehicles may not be able to safely return to a depot.

VI. CONCLUSIONS
We presented an online algorithm for tackling the mVRP

for uncertain travel costs and vehicles with hard capacity con-
straints, based on an LNS component for schedule updates.
Starting from a conservative offline schedule, cost deviations
that occur at runtime are exploited to let vehicles visit more
nodes before returning to a depot. Our experiments show that
this can reduce the makespan significantly, especially when
there is large uncertainty regarding the travel costs.

We plan to examine different topologies and node removal
variants. We also wish to investigate algorithmic extensions
to handle non-negligible depot service times and to explore
more optimistic planning heuristics in conjunction with
methods for learning from previous travel experience.

REFERENCES

[1] U. Ritzinger, J. Puchinger, and R. F. Hartl, “A survey on dynamic
and stochastic vehicle routing problems,” International Journal of
Production Research, vol. 54, no. 1, pp. 215–231, 2016.

[2] H. N. Psaraftis, M. Wen, and C. A. Kontovas, “Dynamic vehicle
routing problems: Three decades and counting,” Networks, vol. 67,
no. 1, pp. 3–31, 2016.

[3] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of
dynamic vehicle routing problems,” European Journal of Operational
Research, vol. 225, no. 1, pp. 1–11, 2013.

[4] H.-K. Chen, C.-F. Hsueh, and M.-S. Chang, “The real-time time-
dependent vehicle routing problem,” Transportation Research Part E:
Logistics and Transportation Review, vol. 42, no. 5, pp. 383–408,
2006.

[5] I. Or, “Traveling salesman-type combinatorial problems and their
relation to the logistics of blood banking,” PhD thesis (Department
of Industrial Engineering and Management Science, Northwestern
University), 1976.

[6] A. Haghani and S. Jung, “A dynamic vehicle routing problem with
time-dependent travel times,” Computers & Operations Research,
vol. 32, no. 11, pp. 2959–2986, 2005.

[7] E. Taniguchi and H. Shimamoto, “Intelligent transportation system
based dynamic vehicle routing and scheduling with variable travel
times,” Transportation Research Part C: Emerging Technologies,
vol. 12, no. 3-4, pp. 235–250, 2004.

[8] J.-Y. Potvin, Y. Xu, and I. Benyahia, “Vehicle routing and schedul-
ing with dynamic travel times,” Computers & Operations Research,
vol. 33, no. 4, pp. 1129–1137, 2006.

[9] S. Lorini, J.-Y. Potvin, and N. Zufferey, “Online vehicle routing
and scheduling with dynamic travel times,” Computers & Operations
Research, vol. 38, no. 7, pp. 1086–1090, 2011.

[10] É. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin, “A
tabu search heuristic for the vehicle routing problem with soft time
windows,” Transportation Science, vol. 31, no. 2, pp. 170–186, 1997.

[11] J. Respen, N. Zufferey, and J.-Y. Potvin, “Online vehicle routing and
scheduling with continuous vehicle tracking,” 2014.

[12] M. Schilde, K. F. Doerner, and R. F. Hartl, “Integrating stochastic
time-dependent travel speed in solution methods for the dynamic dial-
a-ride problem,” European Journal of Operational Research, vol. 238,
no. 1, pp. 18–30, 2014.

[13] Z. Xiang, C. Chu, and H. Chen, “The study of a dynamic dial-
a-ride problem under time-dependent and stochastic environments,”
European Journal of Operational Research, vol. 185, no. 2, pp. 534–
551, 2008.

[14] Y. Liu, “An optimization-driven dynamic vehicle routing algorithm
for on-demand meal delivery using drones,” Computers & Operations
Research, vol. 111, pp. 1–20, 2019.

[15] B. N. Coelho, V. N. Coelho, I. M. Coelho, L. S. Ochi, R. Haghnazar,
D. Zuidema, M. S. Lima, and A. R. da Costa, “A multi-objective green
uav routing problem,” Computers & Operations Research, vol. 88, pp.
306–315, 2017.

[16] P. Shaw, “Using constraint programming and local search methods
to solve vehicle routing problems,” in International Conference on
Principles and Practice of Constraint Programming. Springer, 1998,
pp. 417–431.

[17] P. Venkatesh and A. Singh, “Two metaheuristic approaches for the
multiple traveling salesperson problem,” Applied Soft Computing,
vol. 26, pp. 74–89, 2015.

	INTRODUCTION
	RELATED WORK
	PROBLEM FORMULATION
	Terrain
	Energy capacity, costs and gains
	Path feasibility
	Path completion time and schedule makespan
	Problem statement

	ALGORITHM
	Representation of schedules and state information
	Cost estimation
	Main loop
	Reschedule heuristic

	EVALUATION
	Experimental setup
	Configurations of the online algorithm and reference
	Results

	CONCLUSIONS
	References

