
Active Replication for Centrally Coordinated Teams
of Autonomous Vehicles

Nasos Grigoropoulos, Manos Koutsoubelias and Spyros Lalis
University of Thessaly

Volos, Greece
Email: {athgrigo,emkouts,lalis}@uth.gr

Abstract—Autonomous vehicles, drones in particular, are used
to support a wide range of sensing and actuating missions. While
these missions are typically coordinated by a human operator, it
is attractive to automate this coordination through a computer
program that retrieves information from the vehicles and issues
commands to them according to the mission objectives. However,
the fact that such a computer-driven system may interact with
and affect the physical environment in a direct way, introduces
several challenges. In particular, it is important to tolerate
failures of the mission control computer as smoothly as possible,
avoiding roll-backs that might lead to inconsistencies. To address
this problem, we propose an active replication approach, ensuring
that as long as at least one replica of the mission controller
remains operational, the mission will progress in a consistent way
and with full transparency for the mission program. We define
the properties that should be satisfied to achieve the required
consistency, and present system-level mechanisms that support
both deterministic and non-deterministic mission programs. We
then discuss a concrete implementation of the proposed approach
for an existing programming framework targeting multi-drone
applications. Finally, we give an analytical cost model for the com-
munication overhead of the proposed approach, and report the
actual execution delay incurred in our prototype implementation
for indicative scenarios using a suitable simulation environment.

I. INTRODUCTION

Context & motivation. The impressive developments in
sensors, control systems and embedded computing, have given
rise to autonomous unmanned vehicles (UVs), such as drones,
with substantial navigation and obstacle avoidance capability.
As a result, several inexpensive platforms that can be con-
trolled simply via high-level commands are now available.

In several application domains, such as agriculture, survey-
ing/mapping and surveillance [1], the benefits of using such
platforms can become even greater when multiple UVs are
employed, in a coordinated way, to perform a mission as a
team. The currently established approach, which imposes a
one-to-one relation between a human operator and a UV, is
impractical, does not scale and limits the degree to which one
can exploit the full potential of these autonomous platforms.
Thus, there is great promise in fully automating missions that
involve multiple UVs, by letting the mission be coordinated
by a computer program, rather than human operators.

While a certain degree of self-organization can be achieved
using swarming techniques, these typically assume a large
number of homogeneous UVs with relatively limited sensing
and processing capabilities [2]. However, several real-world

applications can be efficiently supported by employing small
teams consisting of a few but more powerful UVs with
possibly different sensing/actuation capabilities. In this case,
it can be more appropriate to coordinate the team via a
centralized mission control program.

The problem. Centralized solutions offer many advantages
in terms of programmability and management of the available
sensing/actuation resources. But it is crucial for the system
to be able to tolerate failures of the mission control computer,
which is the single most important component for the continu-
ity of the mission. This can be achieved using replication [3],
so that the mission continues in a smooth way as long as at
least one replica of the mission controller remains operational.

One option is to follow a passive replication approach using
a primary-backup scheme [4], whereby the primary replica of
the mission controller actively executes the mission program
and periodically takes checkpoints and sends them to the
backup replicas. However, taking checkpoints frequently can
introduce significant delays in the execution of the mission,
whereas if checkpoints are taken sporadically, in case the
primary replica fails, the backup that takes its place in order
to resume the mission could roll-back to a much older state,
leading to consistency issues.

As an alternative option, one may adopt an active replication
approach [5], where all the replicas of the mission controller
execute the mission program concurrently to each other. This
way the failure of a replica can be masked without resorting
to roll-backs. But this approach also has several issues that
need to be addressed in order to achieve the desired correct
operation and transparent fault-tolerance.

Contribution. In this paper, we investigate how to support
the active replication of the mission controller, while address-
ing all the related correctness/consistency issues. The main
contributions are: (i) we present an approach for supporting
the active replication of the mission controller in coordinated
teams of autonomous vehicles; (ii) we define the properties
that should be satisfied in order to ensure consistency, and
highlight the issues that need to be addressed; (iii) we present,
in detail, a system-level mechanism that tackles the problem
for deterministic mission programs, and briefly discuss how to
deal with non-deterministic mission programs; (iv) we capture
the overheads of a concrete implementation of the proposed
solution, analytically as well as experimentally.

The rest of the paper is organized as follows. Section II



describes the system model we use as a baseline for our work.
Section III defines the desired consistency properties, identifies
the issues that arise when employing an active replication
approach for the mission controller, and presents solutions
for deterministic and non-deterministic mission programs. Sec-
tion IV discusses a concrete implementation of the proposed
solutions for a programming environment that supports multi-
drone applications. Section V gives an analytical cost model
for the communication overhead of the proposed approach,
and presents the results of indicative tests that have been
performed using our prototype implementation on top of a
suitable simulation environment. Section VI gives an overview
of related work. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

We view each autonomous vehicle as a sensor/actuator node
with movement capability. Nodes are coordinated by a distin-
guished entity, the mission controller, which runs the mission
logic. The mission controller acts as a master: it collects
information from the nodes, takes coordination decisions, and
issues high-level commands to the nodes according to the
mission objectives. The nodes act as slaves, following the
commands of the master.

In the spirit of service-oriented computing [6], the sensing,
actuation and mobility/navigation capabilities of the nodes are
exposed in a structured way, through one or more service calls.
Some calls are used to issue commands to the nodes, others
to retrieve information. The mission logic comes in the form
of a program that runs in the mission controller and decides
which service to invoke at any given point in time.

The interaction between the mission program and the node
services is implemented in a transparent way, through suitable
middleware/runtime support. Among other things, the mid-
dleware/runtime is responsible for implementing the remote
service invocation in the spirit of remote procedure calls
(RPCs) [7]. Each service call translates to a corresponding
request that is sent to the target node. In turn, the node
processes the request and sends back the reply. This can be
supported using suitable RPC support, or be implemented
directly on top of a reliable transport service, such as TCP/IP.

For node failures, we assume the fail-stop model: a node
either functions properly or stops. This is according to stan-
dard practice for embedded systems, which internally employ
redundancy and/or secure state estimation techniques [8] [9]
so that they are at least able to detect software/hardware
failures of sensors/actuators as well as adversarial attacks on
them. Moreover, in the case of autonomous vehicles, severe
malfunctions almost inevitably lead to actual crashes [10]. We
assume that node failures are detected at the transport/RPC
layer, and that service calls have at-most-once semantics [11].

The mission controller may also fail during mission exe-
cution. From a traditional RPC perspective, this corresponds
to a client failure, which is typically dealt with by garbage-
collecting orphan calls at the server, using a suitable mecha-
nism such as extermination or reincarnation [7]. In our case,
when a node detects a failure of the mission controller, it

Fig. 1: Organization of the communication for the active
replication of the mission controller.

enters a fail-safe state. Nodes remain in the fail-safe state
until a human operator takes over control manually. However,
it is desirable to tolerate failures of the mission controller in
a transparent way, and continue the execution of the mission
program without any human intervention. This would benefit a
wide range of non-critical applications that can make extensive
usage of autonomous vehicles, increasing the robustness and
achieving a truly autonomic operation of such systems. The
next section presents a solution to this problem.

III. ACTIVE REPLICATION APPROACH

To tolerate failures of the mission controller, we propose
an active replication approach where the mission program
is actively executed by multiple instances of the mission
controller. We refer to each instance of the mission controller
as a replica. If one of the replicas fails, the remaining replicas
can continue with the execution of the mission program.

Note that active replication is traditionally used in computer
systems for servers/services that provide critical functional-
ity [5]. In contrast, in our case the most critical system
component is the mission controller, which according to the
client-server model semantics acts as a client by invoking the
services provided by the nodes.

A. Extensions to the basic system model

Figure 1 shows the organization of the communication that
takes place between the mission controller replicas and the
nodes, as this is assumed in our approach. Each replica inter-
acts with the nodes within a separate/private communication
domain. We refer to this as a replica-node domain. From
a network layer perspective, a replica-node domain can be
implemented as a VPN over the Internet, or via dedicated
telecommunication links. In any case, given that nodes are
mobile, at some point this unavoidably involves wireless
communication. To avoid cross-talk between the domains and
to increase reliability against jamming attacks, each domain
could use a different radio frequency, possibly even a different
radio technology for increased reliability.



Replicas interact with each other using a separate com-
munication domain, the replica domain. Unlike the replica-
node domains, the replica domain could be implemented using
tethered-only networking technology (if the replicas are sta-
tionary). At the application layer, we assume standard reliable
group communication support, such as reliable multicast [12].
The proposed mechanism (discussed in the sequel) works with
simple FIFO delivery, without requiring more advanced/costly
causal or total ordering [13].

We assume that reliable group communication comes with a
reliable failure detection mechanism, ensuring that if a process
(replica) fails then the failure will be announced to all other
working processes (replicas) after the last message that was
sent by the failed replica is delivered. In other words, for the
replicas, we assume fail-stop failures with notification (we do
not address byzantine failures of the mission controller).

B. Replication properties

In the traditional active replication scheme, several proper-
ties have been defined to capture the consistency requirements
for a deterministic replicated service [14]. In our case, where
the replicated entity is the mission controller, we capture the
desired consistency and functionality via two properties:
Uniform Request Agreement. All working replicas issue the

same requests in the same order.
Uniform Reply Integrity. All replicas that issue the same

request, will receive the same reply.
Next, we present a mechanism that ensures these properties,

for deterministic mission program executions. We start by
considering executions without node failures, and then discuss
the extensions that are needed to deal with node failures.
Finally, we briefly discuss how to support the execution of
non-deterministic mission programs.

C. Concurrent execution – without node failures

Assuming deterministic mission program execution, the
replicas of the mission controller can execute the mission
program in parallel to each other, without any synchronization
(as long as there are no node failures, which are discussed in
the sequel). This has the advantage of reduced communication
overhead and faster mission progress. Due to this decoupled
parallel execution, the execution of the mission program at
some replicas may lag behind other replicas. We refer to a
replica as fast if it issues a service call that has not yet been
issued by another replica. A replica is called slow if it issues
a call that has already been issued by some replica(s).

Let replica rk keep a sequence number seqk that is increased
each time it performs a service call to a node. Replica rf is
fast if seqf ≥ seqk,∀k, whereas rs is slow if seqs ≤ seqk,∀k.
Of course, all replicas might issue requests at the same speed,
in which case they are all equally fast/slow.

D. Duplicate service calls

Since the mission is deterministic, a node receives the
same service request multiple times, once from each replica.
However, each service call should be executed at most once.

To deal with such duplicate service calls, each node keeps a
log of the requests received and the replies that were produced
in return. Let log[pos].seq and log[pos].req be the sequence
number and respectively a hash of the request at position pos
in the log, and let log[pos].rpl be the corresponding reply.
Also, let posk be the log position for the last request of rk.
Finally, let pos last be the position of the last log entry, which
corresponds to the last new (not duplicate) request received
from any replica.

When a node receives the next request reqk from rk, it
checks whether posk = pos last. If so, this is a new request,
thus the respective service call is executed, the log pointer
of rk is incremented posk = posk + 1, and the request
is appended to the log together with the reply that is sent
back. If posk < pos last, the request of rk has already
been issued by another replica, and it is checked whether it
is identical to the one stored in the next position of the log,
reqk = log[posk+1].req. If so, the log pointer is incremented,
posk = posk+1, and the corresponding reply log[posk].rpl is
retrieved from the log and is sent to the replica. Else, the node
sends a reply indicating that this is an unexpected request, so
that the mission controller can act accordingly. This can only
occur in an exceptional scenario, which is discussed in more
detail in Section III-F.

E. Node failures

When a node fails, it is no longer guaranteed that all replicas
will continue their execution in the same way, even if the
mission program is deterministic. This is because slow replicas
will not be able to receive any replies from the failed node, and
thus will notify the mission program about the node failure at
an earlier point of execution compared to a faster replica. As
a result, the mission program may take a different execution
path than the one that was followed by the faster replicas,
which may have successfully invoked the node before it failed.
To address the problem, replicas have to synchronize to ensure
that they will all continue the execution of the mission program
in the same way. Note that the node failure may be discovered
by a fast or a slow replica.

To support the required synchronization, every replica rk
also maintains a log with entries for the service calls it
has performed to the nodes. Let log[pos].seq, log[pos].n and
log[pos].rpl denote the call sequence number, the target node,
and the reply that was received from the node, respectively.
Also, every node ni records the current call sequence number
of each replica, and updates the minimum value, which is
included in the replies sent to the replicas. Based on this
information, in turn, each replica rk maintains a conservative
lower bound for the call sequence number of the slowest
among all replica(s), let this be seq slow.

When replica rk detects that node nf has failed, it stops
the execution of the mission program, and enters a special
synchronization state. After recording the failure, it sends to
all replicas, via reliable multicast, a synchronization message
that includes nf and seqk. The message also includes the log
entries for all the calls rk has issued to nf that may have not



yet been performed by some slower replica(s), i.e., all entries
where log[pos].n = nf ∧ seq slow < log[pos].seq ≤ seqk.

When a replica receives a synchronization message for node
nf for which it has not yet detected the failure, it acts as if it
had just detected the failure of nf (as discussed above). Also,
for every synchronization message received, replicas add to
their log any missing entries for the failed node nf , update
the sequence number of the last call that was issued by any
replica to nf , let this be seq last[f ], and update the sequence
number of the slowest replica seq slow.

The size of the synchronization messages exchanged be-
tween the replicas can be reduced using a simple optimization.
Namely, if a replica learns about a node failure from another
replica rk, it suffices to include in its own synchronization
message only the log entries for the failed node that are not
already found in the message of rk (which will be received
by all replicas, thanks to the reliable multicast functionality).

Note that it is straightforward to handle the case where
different replicas concurrently discover the failure of different
nodes. In this case, all replicas remain in the synchronization
state and repeat the process for the additional failed node(s)
before resuming the mission program. Replica rk remains in
the synchronization state until it receives a synchronization
message from every other replica. Then, it reverts to the nor-
mal state, and resumes the execution of the mission program.

Finally, the process of performing a service call is extended
as follows. When the mission program issues a service call,
before sending a request to the target node ni, the replica
checks whether it has recorded a failure of ni. If not, the node
is invoked as usual. Else, it is checked whether the log contains
the reply for this request (seq ≤ seq last[i]), in which case
the reply log[pos].rpl|log[pos].seq = seq is fetched from the
log and is returned to the mission program. If the log does not
contain the reply, an error is returned to the mission program,
indicating that ni has failed (the call sequence number is not
incremented in this case).

F. Replica failures

When a node detects the failure of a replica rf , it simply
removes rf from the set of replicas from which it expects to
receive requests. It may also garbage collect all internal data
structures concerning rf . Nodes will enter the fail-safe state
only when all replicas of the mission controller fail.

When a replica detects the failure of another replica rf ,
it removes rf from the set of working replicas in order
for this replica to be excluded from subsequent communi-
cation/synchronization rounds. Note that if a replica fails
during a synchronization round, thanks to the reliable multicast
functionality, its message will either be received by all working
replicas or by none of them, so this will not affect the outcome.

However, there is a corner case where the failure of a
replica will cause a problem, namely if node nf fails, and
there is a single fast replica rf , which is the only one that
has performed the most recent service call(s) to nf , and rf
fails too, before it manages to send its own synchronization
message with the missing log entries for nf . In this case, the

remaining replicas cannot recover these entries and there is no
safe way for them to deduce that this is a problematic situation.
Thus, they continue with the execution of the mission program
as usual. However, this may lead to a different execution
path from the one followed by the fast replica rf . This
situation is detected when a replica receives a reply indicating
that its request is unexpected (see Section III-D). Then, the
mission program is notified in order to handle the problem
(e.g., set the nodes in fail-safe mode, and retrieve information
from them to assess the current situation). If the prospect of
such a discontinuity is not acceptable, one has to adopt the
more conservative approach for supporting non-deterministic
execution, discussed in Section III-H.

G. Garbage collection of log entries

The logs of the nodes and the replicas cannot grow indef-
initely. Fortunately, both logs can be garbage-collected in a
straightforward way, without any additional communication.

Nodes can remove a log entry once a corresponding service
call request is received from every working replica. More
specifically, all entries with log[pos].seq ≤ seq min can be
safely removed from the log. This way, the log of a node only
contains entries for the service calls that have not yet been
performed by the slowest replicas.

Along the same lines, a replica can truncate its log up to the
entry for which log[pos].seq = seq slow, which represents
a conservative lower bound for the last call that has been
performed by the slower replicas. Recall that seq slow is
calculated independently by each replica, based on the infor-
mation that nodes append to their replies. Also note that during
the synchronization phase, all replicas can update seq slow
to accurately reflect the smallest call sequence number among
all replicas, and thus can safely truncate their log accordingly.

H. Non-deterministic execution

The above approach will only work if the mission program
is deterministic. But requiring the mission logic to be deter-
ministic can be restrictive. Moreover, as discussed above, there
is a corner case that may lead to mission discontinuation.

Non-deterministic execution can be supported by adopting a
semi-active replication approach [15]. Adapted to our context,
this works as follows. When a non-deterministic operation
is encountered in the mission program, the replicas pause
their execution in a barrier-like manner. Then, a distinguished
replica, the leader, executes the non-deterministic part of the
mission program, and when done transfers the local execution
state to the follower replicas (again, this can be done using
simple reliable FIFO multicast). The followers, in turn, update
their state and resume the execution of the mission after the
endpoint of the non-deterministic execution.

If the leader fails, a new one is elected. Given that any
replica can assume this role, the election can be done based
on trivial information that is already available locally at each
replica. For example, the role of the leader can be assigned to
the replica with the largest identifier.



The nodes keep the same log structure as discussed above
in order to avoid executing duplicate service calls during the
execution of deterministic sections. In addition, the requests
issued by the leader during a non-deterministic section are
flagged so that the next request of a follower replica, when it
resumes execution after a non-deterministic section, will not
be detected as unexpected (there will be a gap in the sequence
numbers of the previous and the next request of the replica,
before and respectively after the non-deterministic section).
Note that if the leader fails while executing a non-deterministic
section, the new leader that takes over will perform the
last service call that may have already been performed by
the previous leader before it failed. Such duplicates can be
detected and handled by the node as usual.

As will be shown in Section V, this mode of operation
comes at a significant cost. Therefore, it is important for
missions to be designed so that they have few, well-defined
non-deterministic sections. The worst case is for the entire
mission program to be non-deterministic, in which case the
synchronization between the leader and the followers has to
be performed at every service call towards a node.

IV. IMPLEMENTATION

We have implemented the proposed replication approach
in a suitably extended version of the TeCoLa programming
framework [16]. TeCoLa is a Python-based middleware, de-
signed to facilitate the high-level coordination of dynamic and
heterogeneous robotic teams.

For the interaction between the mission controller and
the nodes we employ GCBRR, a reliable 1-N request/reply
transport with group management capabilities [17]. GCBRR is
designed for channels with physical multicast capability, and
supports 1-to-N request/reply exchanges with the minimum
number of message transmissions, at low latency and without
any contention among the communicating parties. Each service
call performed by the mission programs is mapped, behind the
scenes, to a corresponding request/reply interaction.

The replicas of the mission controller are specified in a
configuration file (the current implementation does not support
the dynamic addition of replicas at runtime). Reliable multicast
communication between the replicas of the mission controller
is implemented using the JGroups toolkit [18]. We configure
JGroups to use UDP/IP as transport to exploit IP multicasting,
and to employ the NAKACK2 protocol for the reliable FIFO
delivery of multicast messages using negative acks.

To support non-deterministic mission programs, a replica
must be able to save and restore the state of the mission
program. In our implementation, this is done using the the
DMTCP framework [19]. To accelerate prototyping, we save
the entire state of the process that runs the mission program
in a brute-force way, without attempting a more elaborate
integration with the TeCoLa environment (which might allow
a more selective recording of the absolutely crucial state
information). To reduce the size of the images, we perform
incremental checkpointing using the HBICT module [20],
which works seamlessly with DMTCP.

V. COST ANALYSIS

In this section we discuss the communication overhead of
the proposed active replication approach. On the one hand,
we give analytical estimations for the main components of
the mechanisms. On the other hand, we record the overhead
of the current implementation in TeCoLa, and compare them
with the analytical estimates. Our analysis assumes that a node
handles incoming requests in a serialized/FIFO manner, thus,
the handling of the next request starts after the handling of the
previous request is completed (as done in the implementation).
Also, we assume that the replica-node domains are isolated
and do not cross-talk/interfere with each other.

A. Experimental setup

The experimental measurements are performed using the
AeroLoop simulation environment [21]. AeroLoop allows the
developer to test mission software by running experiments
with several virtual unmanned aerial vehicles (vUAVs) that
can be controlled from a virtual ground station (vGS). In our
case, the vUAVs and the vGS run the TeCoLa software stack.

We introduce multiple vGS, each running a replica of
the TeCoLa mission controller. The replica-node domains are
implemented as separate wireless WiFi networks, with the
simulation support of NS3. The WiFi rate is set at the basic rate
for multicasts, 1 Mbps. The replica domain is implemented as
a wired Ethernet network with a rate of 210 Mbps.

The mission program that runs on top of TeCoLa, performs
a series of dummy service calls.We set the requests and replies
either so that their payload fully occupies the maximum packet
payload, or so that their payload is empty, in which case the
respective packets only carry the basic protocol headers. We
can also set the amount of processing that is performed by
the node for each such call. In our experiments, we vary
the number of replicas used for the mission controller. Note
that the overhead of the proposed replication scheme does not
depend on the number of nodes employed in the mission.

B. Service call delay in deterministic execution

First, we investigate the end-to-end delay of a service call
for deterministic execution scenarios, for the typical case
where the target node is alive. This can be expressed as
Tcall = Trtt + Tproc. The round-trip-time Trtt is the time
it takes to send the request and receive the reply over the
communication channel of the node-replica domain. For a fast
replica, Tproc equals the time needed by the node to process
the request. For a slow replica, Tproc = 0 if the node is idle,
as the reply is directly fetched from the log. If, however, the
node is busy processing a request of a fast replica, in the worst
case, Tproc will be equal to the respective processing delay.

In a first set of experiments, we measure Tcall for the
case where there are no node failures. We use three different
service calls, which perform a brute-force primality test, with
a processing time Tproc of 1, 2 and 3 seconds, respectively.
Each request and reply carries the maximum packet payload
for WiFi, 1500 bytes, yielding a Trtt of 26 milliseconds at the
WiFi channel rate of 1 Mbps. We employ two replicas of the



Fig. 2: Service call delay in the absence of node failures.

mission controller (A and B), running a mission program that
performs these service calls, one after the other. We experiment
with three execution scenarios. In the parallel execution, both
replicas perform the same call practically at the same time. In
the sequential execution, replica A performs the first service
call, and once this returns then replica B proceeds to perform
the same call. Replica A performs the next service call right
after the completion of the previous call at replica B. In the
interweaved execution, replica A is two calls ahead of replica
B, and replica B performs the first service call when replica
A already performs the last call.

Figure 2 reports the analytical and experimental results.
In the parallel execution scenario, the call delays at both
replicas are the same, and equal to the call delay when
using a single replica. In the sequential execution, replica
B experiences significantly lower service call delays, which
basically amounts to the round-trip time. This is because these
calls have already been processed by the node due to the calls
performed by replica A, so the node simply returns the replies
from the log. Finally, in the interweaved execution, for the first
call, the slower replica B experiences the same delay as the
faster replica A for the third (more time-consuming) call, while
the rest of the calls execute very fast, like in the sequential
execution scenario.

It is important to stress that the experimentally measured
delays are close to the ones estimated analytically. In general,
the service call delay is strictly bounded by the processing
time of the most time-consuming service call. Also note that
any additional replica(s) would experience a call delay within
the lower and upper bounds reported here, depending on the
time of invocation with respect to the faster replica.

C. Replica synchronization delay for node failures

Once a node failure has been detected and the replica
synchronization has been completed, all subsequent calls of the
mission program to that node are handled based on the local
log of the mission controller, without any communication, thus
Tcall is negligible. Therefore, we focus on the overhead of the
synchronization between the replicas.

We analytically estimate Tsync = N × Tlog , where N is
the number of replicas and Tlog is the time it takes for a
replica to send its own log entries to all other replicas via
reliable multicast. This, in turn, can be expressed as Tlog =

Fig. 3: Replica synchronization delay on node failure.

LogS/MaxP × Trm, where LogS is the total size of the log
entries to send, MaxP is the maximum packet payload for
the underlying network, and Trm is the time it takes to send
a reliable multicast message that occupies a full packet. With
JGroups configured to exploit IP multicasting and negative
acknowledgements, each reliable multicast roughly translates
to a single packet transmission, yielding a Trm of about 6
milliseconds for a fully loaded packet of 1500 bytes over the
210 Mbps Ethernet network of the replica domain.

In a second series of experiments, we measure Tsync for 2,
3 and 4 replicas running a mission program that periodically
invokes a node. We also vary the total size of the log entries
that need to be exchanged between the replicas (LogS), from
1 KB, 10 KB up to 100 KB. Note that LogS depends on the
number of service calls performed by the fastest replica to the
node (before it failed) which have not yet been performed by
the slowest replica, as well as on the size of the node’s replies
to these calls. But what actually matters is the total size of
this log information.

Figure 3 shows the results (average over 20 runs; there is no
significant deviation) for the naive and optimized version of
the synchronization protocol (see Section III-E). The analytical
estimates are, as before, very close to the measured delays. We
observe that the synchronization delay increases linearly to the
size of the replica logs and the number of replicas. Notably,
the optimized version reduces the synchronization delay sig-
nificantly, which practically becomes constant irrespectively
of the number of replicas —for every additional replica the
increase is lower than 0.01%. This becomes clearly visible
for larger log sizes. The reason is that only the replica that
detects the failure first, includes in its synchronization message
the log entries for the failed node, while all other replicas
do not re-send the same entries and thus generate very small
synchronization messages.

D. Service call delay in non-deterministic execution

The delay of a service call in the non-deterministic execu-
tion mode can be expressed as Tcall = Tcheckpoint + Trtt +
Tproc. As above, Trtt + Tproc represents the time it takes to
perform the actual call to the node. In addition, one has to pay
the cost of a checkpoint operation Tcheckpoint, which can be
expressed as Trec + Ttransfer, where Trec is the time it takes
for the leader replica to record its state, and Ttransfer is the



Fig. 4: Checkpointing delay in non-deterministic execution.

time needed to transfer the checkpoint image to the follower
replicas via reliable multicast. The state recording delay Trec

depends on the number and size of data objects that were creat-
ed/modified by the mission program. The image transfer delay
can be expressed as Ttransfer = ImageS/MaxP × Trm,
where ImageS is the size of the image, MaxP is the
maximum packet payload for the underlying network, and Trm

is (as above) the time it takes to send a single reliable multicast
message that occupies a full network packet.

We have measured Tcall for a null service, with Tproc = 0
and Trtt = 8 milliseconds for an empty service call request
and reply over the 1 Mbps WiFi network. We do this for 2,
3 and 4 replicas (1, 2 and 3 follower replicas respectively).
Also, we artificially vary the size of checkpoint images, from
1 MB, 5 MB up to 10 MB, which are representative sizes for
several test applications we have programmed in TeCoLa.

Figure 4 reports the results together with the analytical
estimates. Given that the cost for performing the call itself is
negligible compared to the checkpoint delay Tcheckpoint, we
only show the latter, broken down to the state recording delay
Trec and the image transfer delay Ttransfer. As expected, the
delay grows linearly to the size of the checkpoint image. Note
that the number of replicas do not affect the checkpointing
delay significantly; for every additional replica, the increase
is lower than 1% thanks to the efficient underlying reliable
multicast implementation (as discussed above, Trm = 6 mil-
liseconds). However, it is clear that taking a checkpoint
at every service call incurs a significant penalty, especially
when the execution state is large. It is thus important for
the mission program to accurately indicate the parts that are
non-deterministic, allowing the system to adopt the mode of
deterministic execution as much as possible.

VI. RELATED WORK

Extensive research has been done in regard to fault tol-
erance in distributed systems. Among the most well studied
techniques are rollback recovery [22] and replication [3].
Rollback protocols assume a stable storage that is used to store
recovery information during normal execution. After a failure
occurs, the failed component uses this information to restart
its execution from a more recent state. To reduce the extent
of rollback and guarantee that the pre-failure execution can be
deterministically regenerated, log-based protocols [23] have

been proposed, which combine checkpointing with logging
and replaying of non-deterministic events.

Software-based replication achieves fault-tolerance of criti-
cal components by employing multiple instances that can fail
independently. In passive replication [4], one of the replicas,
called the primary, is responsible for receiving and processing
input and producing output. The remaining, called the backups,
are merely notified to apply the changes produced by that
processing. On the contrary, active replication [5] is a non-
centralized approach where all the replicas receive and process
(concurrently) the same sequence of inputs. This leads to
masking the failures and achieving better performance, making
it ideal for (soft) real-time applications. However, it requires
that the output produced by all the replicas is the same, i.e.
the processing is deterministic. In addition, there are variations
that combine elements from both replication strategies [15].

While the vast majority of the replication-related bibliog-
raphy focuses on replicating the server side, in our work we
apply replication to the client side (the mission controller),
which is the most critical component. Also, traditional active
replication requires coordination between the replicas during
each request in order for them to be handled in the same order,
whereas in our approach the replicas need to synchronize
only when a node fails. Finally, in order to support non-
deterministic applications, we adapt our approach to a semi-
active technique supported by appropriate checkpointing.

There are recent research efforts on making byzantine fault-
tolerant (BFT) systems practical, by improving their perfor-
mance [24], robustness [25], and resource efficiency [26].
However, fail-stop failures are a realistic assumption for our
work, given that the embedded/cyber-physical systems we
discuss usually have built-in mechanisms for locally detecting
faults, failures or even malicious attacks. For instance [8]
proposes a model-based estimation approach for detecting
misbehaviors/malfunctions of sensor and actuators in mobile
robots, while [27] presents a framework to achieve detection
of both software and hardware failures, and even achieve
fault mitigation through self-adaption or cooperation between
multiple robots. Notably, in UVs, severe malfunctions almost
inevitably lead to actual crashes [10].

In swarm robotics, tolerance to faults of single robots
is to a large degree built-in. Failures are usually detected
through various, often biologically inspired, techniques [28],
[29], which exploit the natural redundancy of the (large)
swarm. Since no predefined roles are assigned to the robots,
reorganization is achieved in a self-healing fashion [30], [31].

There are also works targeting multi-robot collaborative
systems. ALLIANCE [32] is a software architecture that
facilitates cooperative control of teams of mobile robots for
achieving fault tolerance. It is a distributed, behavior-based
architecture that allows each robot to adapt its actions during
a mission. This way, if a robot fails, its tasks are dynamically
re-allocated to the remaining team members. [33] presents a
programming abstraction for handling failures in ensembles
of robots. The proposed abstraction allows the application
programmer to annotate code blocks that include critical



actions and define compensating actions in case a failure
occurs. However, in both approaches, the fault handling and
recovery is the responsibility of the developer, whereas our
work practically achieves full transparency for the developer
of the mission program.

Finally, [34] presents a passive replication approach for
centrally coordinated robotic systems and deterministic mis-
sion programs. A combination of checkpointing and logging
is employed to support the replay of the mission program in
case of a rollback due to a failure of the mission controller.
Here, we follow an active replication strategy, and additionally
support non-deterministic mission programs.

VII. CONCLUSION

Our work focuses on systems that employ autonomous
unmanned vehicles (UVs) which are centrally coordinated
by a computer-based mission controller, and proposes an
active replication scheme for tolerating failures of the mission
controller, for both deterministic and non-deterministic exe-
cutions. We also discuss an implementation of the proposed
approach and identify the main overheads, analytically and
through simulation experiments. For deterministic execution,
as long as no UV fails, our mechanism does not introduce
any overhead to the execution of the mission compared to
using a single mission controller. When a UV fails, the
synchronization overhead mainly depends on the size of the
log entries that need to be sent from the fastest replica of the
mission controller to the slower ones. For non-deterministic
execution, the overhead is practically dominated by the time
it takes to transfer the execution state of the mission controller
to other replicas.

Since the overhead in deterministic and non-deterministic
execution depends on the size of the logs and checkpoint im-
ages, respectively, we wish to investigate ways to reduce these
sizes. We also wish to evaluate our approach for different radio
technologies, in particular for the replica-node communication
domains. Last but not least, we plan to test and evaluate our
implementation in the real world, using an appropriate testbed.

REFERENCES

[1] https://www.sensefly.com/industries/case-studies.
[2] E. Şahin, “Swarm robotics: From sources of inspiration to domains of

application,” in Swarm Robotics, 2005, pp. 10–20.
[3] R. Guerraoui and A. Schiper, “Fault-tolerance by replication in dis-

tributed systems,” in Reliable Software Technologies — Ada-Europe '96,
1996, pp. 38–57.

[4] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “Distributed
systems (2nd ed.),” 1993, ch. The Primary-backup Approach.

[5] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, 1990.

[6] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[7] B. Nelson, “Remote procedure call,” Ph.D. dissertation, Department of
Computer Science, Carnegie-Mellon University, 1981.

[8] P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu, “RoboADS:
Anomaly detection against sensor and actuator misbehaviors in mobile
robots,” in IEEE/IFIP International Conference on Dependable Systems
and Networks, 2018.

[9] M. L. Fairbairn, I. Bate, and J. A. Stankovic, “Improving the depend-
ability of sensornets,” in IEEE International Conference on Distributed
Computing in Sensor Systems, 2013.

[10] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking drones with intentional sound noise on gyroscopic sensors,”
in USENIX Conference on Security Symposium, 2015.

[11] B. Liskov and R. Scheifler, “Guardians and actions: Linguistic support
for robust, distributed programs,” ACM Transactions on Programming
Languages and Systems, vol. 5, no. 3, pp. 381–404, 1983.

[12] J.-M. Chang and N. F. Maxemchuk, “Reliable broadcast protocols,” ACM
Transactions on Computer Systems, vol. 2, no. 3, pp. 251–273, 1984.

[13] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[14] X. Défago and A. Schiper, “Semi-passive replication and lazy consen-
sus,” Journal of Parallel and Distributed Computing, vol. 64, no. 12,
pp. 1380–1398, 2004.

[15] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso,
“Understanding replication in databases and distributed systems,” in
International Conference on Distributed Computing Systems, 2000.

[16] M. Koutsoubelias and S. Lalis, “Tecola: A programming framework for
dynamic and heterogeneous robotic teams,” in International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Ser-
vices, 2016.

[17] ——, “Coordinated broadcast-based request-reply and group manage-
ment for tightly-coupled wireless system,” in International Conference
on Parallel and Distributed Systems, 2016.

[18] http://jgroups.org.
[19] J. Ansel, K. Arya, and G. Cooperman, “Dmtcp: Transparent check-

pointing for cluster computations and the desktop,” in International
Symposium on Parallel Distributed Processing, 2009.

[20] http://hbict.sourceforge.net.
[21] M. Koutsoubelias, N. Grigoropoulos, and S. Lalis, “A modular simu-

lation environment for multiple UAVs with virtual WiFi and sensing
capability,” in Sensors Applications Symposium, 2018.

[22] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Computing Surveys, vol. 34, no. 3, pp. 375–408, 2002.

[23] L. Alvisi and K. Marzullo, “Message logging: pessimistic, optimistic,
causal, and optimal,” IEEE Transactions on Software Engineering,
vol. 24, no. 2, pp. 149–159, 1998.

[24] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” ACM Transactions on Computer
Systems, vol. 27, no. 4, pp. 7:1–7:39, 2010.

[25] P.-L. Aublin, S. B. Mokhtar, and V. Quema, “RBFT: Redundant byzan-
tine fault tolerance,” in IEEE International Conference on Distributed
Computing Systems, 2013.

[26] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel, “CheapBFT: Resource-efficient
byzantine fault tolerance,” in ACM European Conference on Computer
Systems, 2012.

[27] Y. Cui, R. M. Voyles, J. T. Lane, and M. H. Mahoor, “ReFrESH: A self-
adaptation framework to support fault tolerance in field mobile robots,”
in International Conference on Intelligent Robots and Systems, 2014.

[28] A. Christensen, R. O'Grady, and M. Dorigo, “From fireflies to fault-
tolerant swarms of robots,” IEEE Transactions on Evolutionary Compu-
tation, vol. 13, no. 4, pp. 754–766, 2009.

[29] A. Khadidos, R. M. Crowder, and P. H. Chappell, “Exogenous fault de-
tection and recovery for swarm robotics,” IFAC-PapersOnLine, vol. 48,
no. 3, pp. 2405–2410, 2015.

[30] J. D. Bjerknes and A. F. T. Winfield, “On fault tolerance and scalability
of swarm robotic systems,” in Springer Tracts in Advanced Robotics,
2013, pp. 431–444.

[31] J. Timmis, A. Ismail, J. Bjerknes, and A. Winfield, “An immune-inspired
swarm aggregation algorithm for self-healing swarm robotic systems,”
Biosystems, vol. 146, pp. 60–76, 2016.

[32] L. E. Parker, “Alliance: an architecture for fault tolerant multirobot
cooperation,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 2, pp. 220–240, 1998.

[33] N. Beckman and J. Aldrich, “A programming model for failure-prone,
collaborative robots,” in International Workshop on Software Develop-
ment and Integration in Robotics, 2007.

[34] M. Koutsoubelias and S. Lalis, “Fault-Tolerance Support for Mobile
Robotic Applications,” in International Symposium on Industrial Em-
bedded Systems, 2018.



APPENDIX A
ALGORITHMIC DESCRIPTION

Below, we give an algorithmic description of the active
replication mechanism for deterministic mission programs.

Algorithm 1 shows how a node handles a service call
request coming from a replica of the mission controller, while
Algorithm 2 shows how a replica handles the reply that is sent
from a node in response to a previously issued request.

Algorithm 1 Handling incoming service calls at the node
1: log ← ∅ . request/reply log
2: pos last← 0 . last log position
3: seq min← 0 . smallest sequence number over all replicas
4: for each replica rk do
5: posk ← 0 . position of last request of rk
6: end for

7: upon receiving 〈REQUEST, seqk, reqk〉 from rk do
8: if posk = pos last then . new request
9: rplk ← execute (reqk)

10: pos last← posk
11: posk ← posk + 1
12: append(log, (seqk, reqk, rplk))
13: seq min← min(log[posk].seq|∀k)
14: send 〈REPLY, seqk, rplk, seq min〉 to rk
15: else if posk < pos last then . old request
16: if reqk = log[posk + 1].req then
17: posk ← posk + 1
18: seq min← min(log[posk].seq|∀k)
19: send 〈REPLY, seqk, log[posk].rpl, seq min〉 to rk
20: else . mismatch with logged request
21: send 〈UNEXPECTED REQ, seqk〉 to rk
22: end if
23: end if
24: end

Algorithm 2 Handling node replies at the replica
1: log ← ∅
2: seq slow ← 0 . sequence number of slowest replica(s)

3: upon receiving 〈REPLY, seq, rpl, seq min〉 from ni do
4: append (log, (seq, ni, rpl))
5: seq slow ← max(seq slow, seq min)
6: return-to-mission-program rpl

7: end

8: upon receiving 〈UNEXPECTED REQ, seq〉 from ni do
9: return UnexpectedReqError . notify problematic situation

10: end

Algorithm 3 shows the synchronization between replicas
when a node failure is detected. This includes the optimization
that avoids sending superfluous log entries when a replica
learns about a node failure as a side-effect of receiving the
synchronization message of a faster or equally fast replica.
The code also handles the case where different node failures
are detected simultaneously. Then, multiple synchronization
rounds are performed in parallel, one round for each node.
A replica returns to normal mode when all rounds complete,
i.e., once it receives a synchronization message from every
working replica for each failed node.

Algorithm 3 Replica synchronization for a node failure
1: state← normal
2: for each node ni do
3: failed[i]← false . own failure detection flag for ni

4: sync[i]← 0 . nof sync messages received for the failure of ni

5: seq last[i]← 0 . sequence number of last call to ni in the log
6: end for

7: upon detecting failure of node nf do
8: if failed[f ] = false then
9: state← sync

10: failed[f ]← true
11: seq last[f ]← getLastReqSeqno(log, nf )
12: logf ← getLogEntries(log, nf , seq slow, seq)
13: send 〈SY NC, nf , seq, logf 〉 via RM
14: if (failed[i] = false) ∨ (sync[i] = nofReplicas()), ∀ni then
15: state← normal
16: end if
17: end if
18: end

19: upon receiving 〈SY NC, nf , seqk, logk〉 from rk do
20: sync[f ]← sync[f ] + 1
21: seq slow = min(seq slow, seqk)
22: if seq < seqk then
23: appendLogEntries(log, logk, seq, seqk)
24: seq last[f ]← getLastReqSeqno(log, nf )
25: end if
26: if failed[f ] = false then
27: state← sync
28: failed[f ]← true
29: seq last[f ]← getLastReqSeqno(log, nf )
30: if seq > seqk then
31: logf ← getLogEntries(log, nf , seqk, seq)
32: else
33: logf ← ∅
34: end if
35: send 〈SY NC, nf , seq, logf 〉 via RM
36: end if
37: if (failed[i] = false) ∨ (sync[i] = nofReplicas()), ∀ni then
38: state← normal
39: end if
40: end

Finally, algorithm 4 shows the extended service call han-
dling at the replicas that exploits the log to retrieve the replies
of failed nodes (which were added to the local log via the
above synchronization). If the mission program invokes a
failed node and the log does not contain the reply for that
call, an error is returned indicating the node failure (handled
by the mission program as usual).

Algorithm 4 Extended service call process at the replica
1: when invoking ni with request req do
2: seq ← seq + 1
3: if failed[i] = false then . issue request as usual
4: send 〈REQUEST, seq, req〉 to ni

5: else if seq ≤ seq last[i] then . get reply from the log
6: return-to-mission-program getLogReply(log, seq)
7: else
8: seq ← seq − 1
9: return NodeFailureError . indicate node failure

10: end if
11: end


